Водород в автомобилях: Опасности и сложности использования
Плюсы и минусы использования водорода в качестве автомобильного топлива
Начало 21-го века, как и само начало XX века, также считается временем перемен. Вновь перед населением нашей Планеты замаячила технологическая революция и вновь главное место в ней занимают, как и всегда — автомобили. Как и сто лет назад быстрыми темпами начали развиваться альтернативные виды транспорта, не связанные с привычными нам двигателями внутреннего сгорания. Все чаще можно увидеть на дорогах мира автомобили гибриды, которые приводятся в движение электродвигателем и ДВС. В развитых странах Мира и Европы все чаще входят в обиход электрокары. Совсем еще недавно, каких-то 7 — 10 лет назад, ученные и инженеры пророчили таким машинам с ДВС большое будущее, работающим на самом распространенном элементе в нашей вселенной — водороде. Все это человечество уже проходило в начале прошлого столетия. А потому, заново и вновь подтверждает свою актуальность распространенное по всему белу свету изречение: «Все новое — это хорошо забытое старое».
Сейчас наша Планета переживает новый кризис,- нефтяной. Только связан он не с дефицитом черного золота ставшего на 100 лет локомотивом развития всего человечества, а с перенасыщенностью данного вида товара на рынке. Это быть может и есть тот первый сигнал говорящий нам о том, что «нефтяной век» подходит к своему концу. Как говорят, — каменный век закончился не потому что закончились камни. Поэтому нам так важно сегодня развивать запасной план (запасной источник знергии, для авто в том числе) на случай, если…
21 век в автомобильном мире будет веком распространения технологий будущего. Но не всем новым технологиям суждено выиграть в этом естественном отборе.
И так, приступим. Менее десяти лет назад единственной реальной альтернативой ископаемым видам топлива был по сути водород. Прошли годы, а никаких серьезных подвижек в этом направлении так сделано и не было. Наоборот, аутсайдер того времени то есть электрокар, из пешек, перешел в дамки, с появлением автомобиля Tesla и разработкой очень надежных и прогрессивных аккумуляторов, из которых всем стало ясно, что электрические автомобили — это всерьез и надолго.
Почему так получилось? Ведь водородный ДВС был практически идеальным способом приводить в движение автомобиль. Он не требовал больших вложений в разработку нового агрегата (водород может использоваться в качестве топлива в обычном двигателе внутреннего сгорания). По данным статистики, в случае использования водородного топлива мощность мотора упадет с 82 — до 65%, по сравнению с обычным бензиновым мотором. Но внеся небольшие изменения в саму систему зажигания, мощность того же двигателя сразу увеличится до 118%.
Первый плюс ДВС работающего на водороде: -необходимы минимальные изменения в конструкции двигателя для того, чтобы мотор перевести на новый вид топлива
Экологичность такого вида топлива тоже не подвергается сомнениям. Последняя серийная разработка японской автомобилестроительной корпорации «Toyota» доказала, что «выхлоп» водородного автомобиля можно…по-просту пить. Это лмчно продемонстрировал один зарубежный автожурналист. Он сделал несколько глотков воды поступающей прямо из выхлопной трубы автомобиля Toyota Mirai, и тут-же сказал, что на вкус данная вода вполне себе даже ничего, настоящая дистиллированная, без примесей.
Второй плюс этих ДВС — экологичность. Никакого загрязнения окружающей среды вредными выбросами в атмосферу. Значит, сведение к минимуму этих парниковых газов и спасение нашей прекрасной Планеты. Вот к чему может привести использование этого вида топлива.
Следующий фактор о водородных двигателях (его косвенно можно считать таковым). Исторически так уж сложилось, что водородом заправляли еще «автопионеров» среди ДВС. Первый такой водородный двигатель был построен французским конструктором Франсуа Исаак де Ривазом аж в 1806 году.
Не забудем и те героические времена истории Нашей с вами страны. В блокадном Ленинграде на водород было переведено более 500 автомобилей. И они без особых проблем несли свою непростую но нужную службу.
Получается, что водород, как топливо для сжигания в ДВС, используют уже достаточно давно. Значит и особых проблем в создании современного автомобиля не должно просто быть.
Четвертый значительный фактор говорящий за целесообразность использования вещества с формулой H2- это его колоссальная распространенность на планете. H2 (водород) можно получать даже из отходов и сточных вод.
Часто встречающиеся в природе вещества достаточно дешево стоят. Значит и водородное топливо не должно быть дорогим.
Пятый фактор. — Водород может использоваться не только в ДВС. Технологии также позволяют применять его в так называемом «топливном элементе».
Топливный элемент отделяет один электрон в атоме водорода от одного протона и использует электроны для получения электрического тока. Это электричество способно питать двигатель в электрокаре. В самих топливных элементах также не используется ископаемое топливо, поэтому таковые (топливные элементы) по-просту не загрязняют окружающую среду. И главное достоинство — они безопасны, водород не может сам по себе самопроизвольно испарится из них. Казалось бы, просто идеальный преемник двигателю внутреннего сгорания в качестве источника энергии для автомобилей 21-го века.
Использование водорода может происходить в различных силовых установках, делая его таким образом более гибким к развитию технологий. Разрабатываемые современные водородные автомобили в основном используют эту данную схему, как наиболее безопасную и продуктивную.
Не мало плюсов, неправда ли друзья? И они все очень даже весомые. Но почему тогда до сих пор мы не видим миллионы водородных самодвижущихся экипажей вокруг нас по всей планете? На то есть свои определенные причины, и они также очень сегодня важны.
Давайте рассмотрим некоторые из причин, в том числе серьезные опасности, которые могут быть связаны с водородной энергетикой.
Первый минус. -Да, это правда, водород самый распространенный элемент во всей Вселенной, однако на самой Земле в чистом виде газообразный водород найти сегодня практически невозможно. Этот газ необычайно легок. Поэтому в чистом виде он очень быстро (почти моментально) поднимается к верхним слоям атмосферы и уходит дальше в безвоздушное пространство.
В подавляющем большинстве случаев атомы водорода связаны с другими типами атомов в разнообразные молекулы, которые образуют после этого различные вещества. Вот например, H2O, более известная нам всем, как вода, или тот же СН4, также известный, как метан, оба эти элемента содержат в себе молекулы водорода.
Поэтому получается, прежде чем водород может быть использован в качестве альтернативного топлива, он сначала должен быть извлечен из этих самых веществ, а затем уже переведен в особое состояние, то есть как правило, в тот самый сжиженный и необходимый нам вид.
На все эти действия потребуются очень большие затраты энергии, а значит и коллосальные материальные средства. К примеру, для извлечения H2 (водорода) из воды с помощью электролиза требуется большое количество электроэнергии, что на данный момент просто нерентабельно. По разным подсчетам стоимость 1 литра сжиженного водорода составляет примерно от $2 долларов и до 8 Евро, в зависимости от способа его добычи.
Следующим звеном в цепочке под номером два идет: -отсутствие развитой структурной сети самих водородных заправок. Стоимость оборудования для таких заправочных станций в разы выше, чем у обычной АЗС. Существует различные проекты для водородозаправляющих станций, как от классических АЗС, так и до частных минизаправок. При сегодняшнем развитии смежных технологий все эти проекты чрезвычайно дороги и относительно опасны.
Развитие сети водородных заправок дело будущих десятилетий. Именно столько должно пройти времени, чтобы стоимость их постройки была целесообразной.
Существуют ли опасности, которые связаны с наличием большого количества чистого водорода скопившегося в одном месте? Безусловно существует. Когда жидкий водород хранится в резервуарах, это безопасно, но стоит ему просочится в окружающую среду, как он моментально превращается в гремучую смесь (гремучий газ).
В плюсах мы уже отметили, что водородом можно заправлять автомобили с обычным двигателем внутреннего сгорания (в домашних условиях не повторять! ОПАСНО. ), но однако, этот обычный двигатель проработает на чистом водороде не долго. Он быстро сломается. При сгорании водородной смеси выделяется большее количество тепла, чем при сгорании того же бензина, а это может привести под высокими нагрузками к перегреву клапанов и поршней двигателя. Помимо этого ,под воздействием высоких температур H2 (водород) может влиять на саму смазку в двигателе и на материалы из которых сделан мотор, что непременно приведет к повышенному износу рабочих частей агрегата.
Отсюда мы делаем неутешительный вывод: -без очень дорогостоящей модернизации ДВС, которая должна приспособить мотор к работе на этом виде горючего, использование водорода как топлива не приведет к ожидаемому результату.
А пока все построенные объекты для заправки автомобилей водородом скорее всего используются в качестве рекламного хода и для демонстрации возможностей будущего.
Топливные ячейки стоят на третьей позиции в качестве минусов. Эти вроде безопасные элементы тоже не избежали тернистого пути метода проб и ошибок. Как и с теми же заправочными станциями и с теми же двигателями ДВС, все упирается именно в стоимость применяемых на данный момент технологий.
Приведем один пример. В качестве катализатора в этих топливных элементах используется на данный момент платина. А теперь представляете друзья стоимость такой детали?!
Некоторые технологии для ДВС настолько дороги, что проще купить жене платиновое кольцо с бриллиантом, чем заменить сломавшуюся деталь в водородном автомобиле.
Хорошая новость в этом достаточно дорогом деле заключается в том, что ученные непрерывно день-изо-дня ищут замену этому драгоценному металлу. Разрабатываются все новые технологии, проходят тестирования новые современные материалы. В конечном итоге ученые надеются, что «топливные элементы будущего» могут существенно снизить себестоимость сегодняшних элементов в 1000 раз и более.
И наконец последними, возглавляющими наш список минусов водородных технологий являются: — смертельные опасности, связанные с жидким и газообразным водородом.
Возглавляет окончательный список проблем — само возгорание водорода. В присутствии окислителя, т.е. кислорода, водород может сам по-себе просто загореться. Иногда такое возгорание происходит в виде взрыва. Согласно проведенным исследованиям было установлено, что для воспламенения водорода достаточно всего одной 10(десятой) частички энергии, что требуется для воспламенения бензина. Проще говоря можно сказать, что достаточно всего маленькой искры от статического электричества, чтобы этот гремучий газ вспыхнул.
Еще одна проблема кроется в том, что это пламя водорода почти невидимо. При возгорании водорода пламя настолько тускло, что с ним не так-то просто бороться (справиться).
А вот друзья еще одно летальное свойство водорода: -он может привести к удушью. H2 конечно не ядовит, но, если вы начнете дышать чистым водородом, то можете просто задохнуться и все потому, что будете просто-напросто лишены обычного кислорода. И хуже того, распознать, что концентрация водорода в воздухе очень высока просто невозможно, так как он совсем невидим и не имеет запаха, так же как и сам кислород.
И наконец последняя причина. Как и любой сжиженный газ водород имеет очень низкую температуру. При утечке из бака и непосредственным контактом с открытыми участками тела человека, он может привести к серьезному обморожению.
Действительно ли водород на столько опасен?
Наверное, после всего прочитанного Вы будете уважаемые читатели просто в шоке, что водород на столько опасен. И возможно никогда не захочете покупать себе водородный автомобиль, если в будущем у вас появится такая возможность(?).
На самом деле не все так уж и плохо. Поскольку газообразный водород чрезвычайно легок, то при утечке он быстро рассеется в самой атмосфере. Тогда ни какой гремучей смеси не получится и опасность взрыва будет сведена к минимуму.
Что касается опасности удушья, то мы ответим вам так: –такая проблема может случиться только в замкнутом пространстве, например в гараже. Если же утечка водорода произойдет на открытом воздухе, то его концентрация будет незначительной и небольшой, опасности для жизни она не представляет.
Водородный двигатель 4JM
В поиске новых, более дешёвых источников энергии передвижения человеческая мысль пришла к идее использования водорода в качестве топлива для заправки колёсных средств передвижения. Несмотря на то, что идея не нова (первый водородный двигатель внутреннего сгорания создан в 1806 году французом Франсуа Де Ривасом), к промышленному использованию самого лёгкого газа в топливных элементах, двс и газотурбинных двигателях инженеры пришли только вначале нового, XXI века.
Как работает водородный двигатель
Главной причиной поиска нового источника энергии для автомобильных двигателей стала острая необходимость сокращения вредных выбросов. Современные технологии очистки отработанного топлива позволяют сократить объёмы выбросов до сотен граммов на километр пути. Но ситуация усугубляется неконтролируемым ростом числа автомашин на дорогах: разбухающий автомобильный поток нивелирует качество современных технологий удаления кислородно-углеродной смеси.
Наиболее перспективным направлением развития водородной технологии является применение топливных элементов. Они способны производить электроэнергию, располагаясь непосредственно на борту транспортного средства. В числе прочих разработкой гибридного водородного двигателя занимаются инженеры японской автомобильной корпорации Toyota Motor Corporation. В 2014 году под этой появился первый в мире серийный автомобиль на водороде – Mirai (в переводе с японского – «будущее»).
Силовая установка Toyota Mirai – гибридная, включает три составные части:
- батарея топливных элементов TFCS;
- водородные баллоны высокого давления;
- повышающий преобразователь.
Батарея способна производить 114 кВт мощности, что по DIN эквивалентно 155 л.с. Удельная мощность батареи TFCS (3,1 кВт/л) более, чем в 2 раза выше первого варианта, разработанного инженерами Toyota – FCHV-advantage.
4JM – лучший в мире водородный мотор
Следует отметить, что химическая реакция по выработке электрической энергии происходит без горения, повышая, тем самым экологичность и без того абсолютно «чистого» электромотора. Преобразование энергии в двигателе 4JM осуществляется с КПД 83 %. На двигатель установлена вторичная никель-кадмиевая батарея в виде аккумулятора мощностью 21 кВт.
4JM представляет собой синхронный электродвигатель переменного тока. При рекуперативном торможении аккумулятор сохраняет возвращаемую в сеть электроэнергию, которая вырабатывается тяговым двигателем в режиме генератора.
С помощью преобразователя полученное на элементах напряжение повышается до показателя 650 В. Это нужно для того, чтобы уменьшить геометрические параметры электромотора и число топливных элементов, компактно уместить составные части системы внутри автомобиля. Постоянный ток в переменный преобразуется с помощью инвертора. В процессе заправки закачка водорода в бак производится через фильтрационную угольную систему. При движении через воздухозаборники в батарею попадает воздух из атмосферы.
Начинается химическая реакция с водородом, результатом которой является получение электрической энергии. При нажатии на акселератор осуществляется её подача от батареи к мотору. Знатоки химии сразу определят, что единственным побочным продуктом в данной цепочке является образующаяся в результате химической реакции вода. Её отвод осуществляется через выхлопную трубу.
Расположение батареи и водородных баллонов высокого давления по центру машины вкупе с оптимальными настройками электромотора обеспечивают оптимальное управление показателями мощности. Результатом этого является восприимчивость машины к действиям водителя на любой скорости, повышение крутящего момента и обеспечение плавного разгона. В обратном порядке происходит процедура торможения.
Геометрия машины спроектирована таким образом, чтобы обеспечить максимально низкий центр тяжести, оптимальную развесовку передней и задней частей кузова и общую максимальную жёсткость конструкции.
Количество водородных ёмкостей – 2 (60 и 62,4 л, соответственно). Газ хранится в них под давлением 70 МПа. Максимальная масса водорода, закачиваемого в ёмкости в течение 3 минут, составляет 5 кг. Это позволяет на одной заправке проехать до 650 километров, развивая максимальную скорость 175 км/ч.
Всё ли так безоблачно в водородной технологии
Срок службы одной топливной ячейки, работающей на водороде, составляет до 10 лет. В работе двигателя отсутствуют характерные для двс шумы и вибрация. Моторы абсолютно чисты с экологической точки зрения. Тем не менее, критика исследований в области транспорта на водородном топливе обширна. Апологеты традиционных источников энергии для колёсных автомашин и разработчики обычных электродвигателей «задвигают» водород, указывая на ряд трудноразрешимых вопросов в области инфраструктуры и технологии.
Критики водородного транспорта указывают на отсутствие стандартов в области производства, хранения, перемещения и использования водорода. Значительный объём топливных баков для дальних поездок сокращает вместимость салона и багажника. Есть чисто технологические факторы, связанные с опасностью неправильного обращения с оборудованием для хранения и закачки водорода. Он чрезвычайно летуч: малейший зазор в конструкции баков и систем подачи водорода к месту химической реакции может привести замкнутому наполнению салона автомашины и воспламенению.
Словом, проблем, которые предстоит решить на пути к безопасному и экономичному массовому применению водорода для заправки автомобильного транспорта, достаточно. Главный вопрос в том, готовы ли владельцы автокорпораций вкладывать значительные средства в развитие новой инфраструктуры, дальнейшие теоретические исследования и практические разработки. Ведь на сегодня дозаправка автомашин в пути (то есть, без посещения специальных заправочных станций) невозможна.
Деньги – основа всего
Главным «минусом» считается сложность процесса производства столь огромного количества водорода, которое понадобится при массовом переводе машин на новое топливо. Дорого на сегодняшний день получать водород, как из природного газа, так и методом электролиза. Таким образом, стоимость пробега на машине с водородным двигателем значительно дороже, нежели на бензине или солярке.
На данный момент, заправляя 120 литров водорода в пару баков высокого давления, владельцы авто должны выложить 960 евро. Это очень дорого, в сравнении с бензином или дизельным топливом. Позволить себе приобрести такой автомобиль и постоянно передвигаться на нём, наматывая немалые «концы», может позволить не каждый средний житель развитых стран Европы, Азии или Америки. Пока Toyota Mirai представляет собой дорогой экземпляр для автомобильной коллекции, либо средство передвижения для толстосумов, не привыкших считать деньги.
Частичным решением вопроса мог бы стать гибридный двигатель, в котором вторым топливом является традиционный бензин или солярка. Для проведения такого тюнинга вручную, нужно осуществить установку пусковой батареи, БСУ, водородных и кислородных баллонов. Электротехническая часть тюнинга:
- электрохимический генератор (ЭХГ);
- электродвигатель;
- пусковая батарея.
Сырьём для получения водорода является питьевая вода, слитая в ёмкость для электролиза. Источником энергии является генератор. Газ вырабатывается в небольшом количестве, затем направляется во впускной коллектор двс. Там происходит смешивание водорода с бензином и последующее сгорание. Однако, расход энергии на получение водорода в пути, и его количество не позволяют говорить об экономичности подобных установок.
Невзирая на то, что машины с гибридными установками на водородном топливе и электромоторах ближе всего по конструкции, философии использования и технологии к обычным электромобилям, апологеты последних являются главными критиками нового источника энергии. Видимо, в будущем затраты на решение всех вопросов будут ничтожными по сравнению с доходами от продаж автомашин на водороде. Если, конечно, удастся преодолеть все препятствия.
О водороде, ДВС и электроприводе
Случился у меня спор. И ладно бы со студентом, так нет – с человеком солидным, специалистом по грузовым перевозкам. Он заявил, что грузовик Nikola Tre, представленный недавно компанией Nikola Motor, имеет водородный двигатель.
Нет, говорю, там никакого водородного двигателя. А есть электрохимический генератор на водородных топливных элементах (ТЭ). Он вырабатывает электроэнергию для электромоторов. А они уже двигают колеса. Это электрический грузовик!
Оппонент не согласился, утверждая, что водородный двигатель у Nikola Tre все же есть, а я путаю этот автомобиль с Tesla.
Ну, спасибо. Придется опять начинать все с начала. Что ж, давайте разберемся, какими же двигателями, а точнее – энергетическими установками оснащаются водородные грузовики Nikola. И вообще автомобили с ТЭ.
«Рождающий воду»
Водород – удивительный химический элемент, самый распространенный во Вселенной. Как об этом узнали? Очень просто, по спектральному анализу излучений звезд. Водород Н2 занимает первую клеточку в периодической системе Менделеева. Имеет братьев, они называются изотопами. Это дейтерий и тритий.
Сам водород впервые был исследован в 1766 году Генри Кавендишем – ученый окрестил его «горючим воздухом». Чуть позже, в 1787 году Антуан Лавуазье доказал, что водород при горении образует воду. Он включил этот газ в список химических элементов и назвал hydrogène – рождающий воду.
Водород используют при синтезе аммиака, соляной кислоты, метанола и высших спиртов, получения жидкого ракетного топлива… А еще для гидроочистки и гидрокрекинга нефтяных фракций (вспомним гидрокрекинговое моторное масло), для получения металлов из оксидов и фторидов, для создания защитной среды при обработке металлов и сплавов – перечислять можно долго.
Не забудем и применение водорода для дирижаблей. Впрочем, страшная трагедия с «Гинденбургом» в 1937 году поставила крест на использовании водорода в качестве подъемного газа для воздушных судов. А потом и вовсе закрыла тему дирижаблей в пользу многоместных самолетов. Но в практике привязных аэростатов водород остался, о чем мы скажем ниже.
А сейчас вернемся к автомобильной теме и слову hydrogène. Именно «рождение воды» при горении, а точнее, окислении, сделало водород привлекательным топливом в непростой экологической ситуации ХХI века.
Автомобиль на водороде
Автомобильные концерны возлагают большие надежды на силовые установки, работающие на водороде. И добиваются немалых успехов на этом поприще. В последние годы это особенно заметно.
Как моторное топливо водород используется давно. Но только не в автомобильных, а в ракетных двигателях, которые устанавливаются на тяжелых ракетоносителях, предназначенных для запуска космических аппаратов. Для этих целей пара «водород/кислород» в значении «топливо/окислитель» считается наиболее эффективной.
Использовать водородное топливо в автомобиле можно двумя способами:
- сжигать в камерах сгорания поршневых двигателей;
- направлять водород в электрохимический генератор (другое название – топливные элементы). Генератор вырабатывает электрическую энергию, которая подается на электродвигатель.
Рассмотрим оба варианта подробнее.
Решение первое: сжигать в цилиндрах
Первый патент на изобретение водородного автомобиля получил в 1807 году Франсуа Исаак де Риваз.
В 1860 году Этьен Ленуар запатентовал двигатель внутреннего сгорания, работающий на светильном газе. Водорода Н2 там было 50%, метана СН4 – 34%, оксида углерода СO – 8%, остальное составляли другие газы.
Двигатель Ленуара мощностью 12 л. с. получил распространение на локомотивах, судах, транспортных экипажах и др. Однако в последующие годы этот тип ДВС был вытеснен двигателем Отто.
Автор нашего журнала Александр Раменский рассказал, что в Советском Союзе работы по исследованию водорода в качестве моторного топлива начались в 1935 году. Они проводились в Московском механико-машиностроительном институте им. М. В. Ломоносова (MMМИ), ныне МГТУ им Н. Э. Баумана.
Практическое же применение водорода как моторного топлива началось в 1941 году в блокадном Ленинграде. Техник-лейтенант Б. И. Шелищ предложил использовать водород, «отработавший» в аэростатах, в качестве топлива для двигателей автомобиля ГАЗ-АА. История эта такова.
Автомобиль ГАЗ-АА на водороде
Заградительные аэростаты поднимались на высоту до 5 км и являлись надежным противовоздушным средством обороны города, не позволяя самолетам противника осуществлять прицельное бомбометание. Для опускания аэростатов, частично потерявших подъемную силу, требовалась большая мощность. Эта операция осуществлялась посредством механической лебедки, установленной на автомобиль ГАЗ-АА, двигатель которого и вращал лебедку. А сами водородные автомобили ГАЗ-АА включались в состав постов противовоздушной обороны (ПВО).
В блокадном Ленинграде было оборудовано несколько сотен постов ПВО, на которых использовались автомобили ГАЗ-АА, работающие на водороде.
В наши дни сторонником сжигания водорода в цилиндрах ДВС выступила фирма BMW. На ряде международных автосалонов компания продемонстрировала свое достижение в этой области – одноместный рекордный автомобиль BMW H2R.
Он оснащался хорошо известным 6-литровым 12-цилиндровым V-образным двигателем с системой Valvetronic – но адаптированным под питание водородом.
Максимальная мощность водородного двигателя составляет 210 кВт (285 л. с.). Для сравнения, у исходного варианта мотора V12 для BMW 760i она равна 327 кВт (445 л. с.). Как видно, потеря мощности получается значительной.
12-цилиндровый V-образный двигатель с системой Valvetronic, адаптированный под питание водородом Одноместный автомобиль BMW H 2 R с водородным ДВС
Представленный на фото водородный автомобиль имеет массу 1560 кг, развивает максимальную скорость 302,4 км/ч, а разгон до 100 км/ч занимает около 6 секунд.
Однако добиться идеального транспортного средства с точки зрения экологии при сжигании водорода в цилиндрах не получается. Отработавшие газы водородных BMW все же содержат некоторое количество токсичных веществ. Они образуются в результате химических реакций вследствие высокой температуры в камере сгорания.
И все же вариант BMW хорош тем, что конструкция автомобиля и двигателя в целом не меняется. Основные усилия направляются на создание принципиально новой топливной аппаратуры. При этом расходы на переоснащение производства не столь велики, как во втором случае. Об этом – в следующем разделе.
Решение второе: вырабатывать электричество
В этом случае водород в цилиндрах не сжигают. Их вообще нет, цилиндров.
Основными компонентами автотранспортного средства являются электрохимический генератор (ЭХГ) на водородных топливных элементах, буферная аккумуляторная батарея, электрический мотор-генератор, управляющая и силовая электроника – последняя предназначена для коммутации силовых электрических цепей.
При динамичном разгоне батарея приходит на помощь ЭХГ. Кроме того, она используется для запуска генератора, а также для накопления энергии, вырабатываемой при торможении (режим рекуперации).
Кроме водорода, для функционирования топливных элементов необходим кислород. Он поступает в ЭХГ вместе с воздухом, который предварительно очищается от углекислого газа. А ключом к успеху служит совершенствование характеристик топливных элементов.
Казалось бы, идеальное топливо для автотранспорта найдено. Последствия его применения – водяной пар. При этом никаких токсичных компонентов или парниковых газов не образуется. А если получать водород методом электролиза, то вообще прекрасно – происходит круговорот воды.
ТЭ создали еще в 60-х годах прошлого века. С их помощью получают электроэнергию, воду и тепло на бортах космических аппаратов Одна из первых версий автомобиля Honda Clarity на топливных элементах Mercedes GLC F Cell на водородных топливных элементах
Да, в экологическом отношении топливные элементы предпочтительнее водородных ДВС, поэтому большинство исследований и разработок идет именно в направлении ТЭ. Но ЭХГ пока что дороги для массового применения.
И потом, откуда брать первичную электроэнергию, необходимую для электролиза? Вернее, каким экологически чистым способом ее получать? Футурологи предлагают ветряные электростанции или солнечные батареи, хотя последние больше подходят для стран с жарким климатом.
Кроме электролиза воды, водород можно получать и иными способами, например из углеводородного сырья. Скажем, из того же метана, как сейчас в большинстве случаев и делается, или даже из бензина. При риформинге, т.е. нагревании в присутствии платины или оксида молибдена для повышения октанового числа бензина появляется и побочный продукт – водород. Он-то нам и нужен.
Так родилась идея – установить риформер прямо на борту автомобиля, а в бак заливать очищенный бензин на обычных заправочных станциях. Однако силовая установка получается очень сложной, трехступенчатой: риформер – топливные элементы – электродвигатель. Причем кроме паров воды в процессе ее функционирования будут образовываться и другие химические вещества.
Ряд фирм осуществляют экспериментальную отработку этого технического предложения. Специалисты надеются, что, несмотря на многоступенчатость преобразования энергии, общий КПД силовой установки окажется выше, чем у обычного бензинового двигателя.
Конечно, нельзя забывать и про емкость для хранения водорода. Для обеспечения приемлемого пробега на одной заправке необходимо, чтобы баллон со сжатым топливом выдерживал очень высокие давления (несколько сот атмосфер), или надо идти по пути применения криогенной техники, что технически также реализуемо.
Водород для тяжеловеса
Два последних года запомнились важными «водородными» новостями. Поговорим об известном проекте электрического грузовика Nikola One, представленного американской компанией Nikola Motor в 2016 году. История эта получила продолжение.
Итак, Nikola One. Грузовой электрокар, тягач с электроприводом и батареей емкостью 320 кВт·ч. На борту – собственная автономная электростанция. Электроэнергию вырабатывает система водородных топливных элементов.
Nikola One для американского рынка
Как заявил производитель, этот грузовик имеет автономный запас хода почти 1200 миль, по-нашему – 2000 км. И движется он с нулевой эмиссией отработавших газов – их просто нет, этих газов.
Изначально его планировали оснащать «удлинителем хода» – газотурбинным бортовым генератором, но потом все же остановились на ТЭ. Правда, для некоторых рынков возможность использования газотурбинного генератора все же оставили.
Заявленные характеристики тягача существенно превышают показатели большинства электромобилей, но есть и сомнения – хватит ли энергии силовой установки для перемещения 35-тонных грузов? На этот вопрос ответит практика эксплуатации. Но тут возникает еще одна проблема: где брать водород в достаточном количестве для парка Nikola One?
Компоновка тягача Nikola на водороде: 1 – система охлаждения; 2 – два электрических мотор-редуктора для привода передних колес; 3 – блок высоковольтной и управляющей электроники; 4 – тяговая батарея; 5 – ресивер пневматической тормозной системы и бак системы охлаждения батареи; 6 – электрохимический генератор (топливные элементы на 300 кВт); 7 – баки с водородом; 8 – задний мост с электродвигателем; 9 – седло Фото: https://www.automobile-propre.com
Главный исполнительный директор (Chief Executive Officer) компании Nikola Motors Тревор Милтон (Trevor Milton) заявил, что концепция электрического грузовика Nikola One будет опираться на собственную водородную инфраструктуру. Она раскинется по всей территории Соединенных Штатов, захватив частично и Канаду. Компания намерена строить электролизные установки и транспортировать водород на заправки.
Не так давно Nikola Motor обрела партнера – компанию Nel ASA. Эта фирма поставляет для Nikola оборудование, помогая создать самую большую водородную топливную сеть в мире. Достаточно сказать, что в ней будут действовать 16 электролизных станций, работающих по технологии H2Station.
Уже знакомый нам г-н Тревор Милтон заявил, что заказ на поставку первых двух станций на основе щелочных электролизеров компания Nel ASA уже выполняет. Остальные 14 станций получат путевку в жизнь в ближайшее время.
Скотт Перри, один из ведущих специалистов Nikola Motor, рассказал, что компания Nel ASA поставляет водород в более чем 80 стран с 1927 года. «Мы уверены, что с таким опытным партнером наш проект будет успешным», – с оптимизмом заключил он.
Первоначально каждая станция будет производить до 8 т водорода в день. Однако объем выпуска может быть увеличен до 32 т в день. Кстати, каждый грузовик Nikola ежедневно будет потреблять около 50–75 кг водорода.
Интересная подробность: Nikola Motor намерена предоставлять свои заправки всем водородным транспортным средствам, а не только грузовикам собственной марки.
Прошло немного времени, и компания Nikola заявила, что будет производить не один, а два тягача – Nikola One и Nikola Two. Вторая модель отличается в первую очередь кабиной. Если у Nikola One имеется спальный отсек, то Nikola Two оснащен лишь компактной кабиной для перевозок, но не для отдыха.
С точки зрения энергетики Nikola Two не отличается от Nikola One. За кабиной находятся баллоны с водородом для питания электрохимического генератора. Он вырабатывает электрическую энергию для мотор-редукторов суммарной мощностью более 1000 л. с. По информации производителя, разгон до 60 миль/ч занимает не более 30 секунд, а пробег на одной заправке водородом составляет 1200 миль. Заправка же займет не больше 15 минут.
Nikola Two также ориентирован на американский рынок
В конце ноября 2018 года компания представили третью модель водородного грузовика. Она так и называется – Nikola Tre («три» по-норвежски). Если Nikola One и Nikola Two адресованы американскому рынку, то бескапотный Nikola Tre будет работать в Европе.
Nikola Tre для европейского рынка
Технические характеристики Nikola Tre практически не отличаются от двух первых моделей. Силовая установка мощностью от 500 до 1000 л. с., крутящий момент до 2000 Нм, запас хода до 1200 миль, продолжительность заправки примерно 20 минут.
И где же водородный двигатель?
А теперь вернемся к началу статьи. Какой же двигатель у грузовиков Nikola? Да и вообще у автомбилей с ТЭ?
Прежде чем ответить, зададим другой вопрос: что такое двигатель? Большая Советская Энциклопедия (БСЭ) дает строгое определение: двигатель – это энергосиловая машина, преобразующая какой-либо вид энергии в механическую работу. Согласна с этим и современная Википедия – куда ж ей без БСЭ?
Так вот: в автомобилях с ТЭ в механическую работу преобразуется электрическая энергия. Двигатель у этих транспортных средств – электрический. А электричество вырабатывает электрохимический генератор – те самые водородные топливные элементы.
А коль двигатель электрический, значит, речь об электромобиле? Именно так. Это электромобиль с автономной электростанцией на борту.
Число водородных заправок будет расти
Можно представить и формальные, если хотите – юридические доказательства. Читаем внимательно Международный стандарт IEC/TS62282–1:2010 «Технологии топливных элементов. Часть 1. Терминология». В нем дается четкое определение транспортного средства на топливных элементах (ТСТЭ). По-английски – fuel cell vehicle (FCV).
Цитируем: «ТСТЭ представляет собой электрическое транспортное средство (электромобиль), в котором энергетическая система на топливных элементах подает питание на электродвигатель для приведения транспортного средства в движение».
Прикажете открыть национальный стандарт? Легко! Вот ГОСТ Р 54811–2011 «Электромобили. Методы испытаний на активную и пассивную безопасность». Там дается следующее определение электромобилей (снова цитируем):
• п. 3.8. «Электромобиль (ЭМ): колесное транспортное (автотранспортное) средство категорий М1 и N1 по ГОСТ Р 52051, приводимое в движение одним или несколькими электрическими двигателями, получающими энергию от аккумуляторных батарей, емкостных накопителей и (или) топливных элементов, предназначенное для эксплуатации на автомобильных дорогах общего пользования и на дорогах, специально предназначенных для ЭМ»;
• п. 3.10. «Электромобиль с топливными элементами: ЭМ, электрическая энергия для движения которого вырабатывается топливными элементами, установленными на ЭМ, и может накапливаться в тяговых аккумуляторных батареях или емкостных накопителях энергии, также установленных на ЭМ».
Так что как ни крути, Nikola One, Two и Tre – электромобили. И двигатели у них – электрические, а не водородные.
А вот у описанного выше BMW H2R двигатель действительно водородный. Потому что это ДВС, работающий на водороде. Точно так же, как ДВС, работающий на бензине, мы назовем бензиновым двигателем, на дизельном топливе – дизельным, а на метане – газовым.
О перспективе
Сможет ли водород в будущем стать альтернативой ископаемому топливу? Интересные подробности сообщает агентство euronews.
Замена бензина и дизельного топлива водородом позволит снизить выбросы CO2. К сожалению, сегодня в Европе лишь несколько сотен автомобилей ездят на водороде, отмечает агентство. Отличный пример показывает Дания. Это первая в мире страна с развитой инфраструктурой с десятком заправочных станций по всей территории.
Существует амбициозный проект – в ближайшие годы построить в Европе полсотни водородных заправок. А число машин с водородными топливными элементами должно удвоиться.
ТЭ имеют целый ряд преимуществ перед традиционными ДВС. Прежде всего, энергетическая установка работает мягко, ровно, бесшумно. А это комфорт! При этом водитель сохраняет все привычки, выработанные за рулем автомобиля с ДВС. Когда нужно, заезжает на заправку и через 3–5 минут продолжает путь, проезжая без остановки порядка 600 км.
Дело за малым – наладить производство водорода с помощью возобновляемых источников энергии. И такая технология уже существует. На заправочной станции в английском Шеффилде имеется установка для элекролиза. Ветряные генераторы вырабатывают энергию, и она тут же используется для получения водорода из воды методом электролиза.
Водород планируется получать за счет развития зеленой энергетики
И все же большая часть водорода сегодня добывается из ископаемого топлива. И научные исследования направлены на то, чтобы повысить эффективность электролизеров. И тогда водородное топливо можно получать «на месте», отказавшись от его доставки в автоцистернах.
Пока не решена проблема высокой стоимости – как топлива, так и самих водородных автомобилей. Однако эксперты надеются, что к 2025 году цены на машины с ТЭ и на водород будут сопоставимы с аналогичными показателями бензиновых и дизельных автомобилей.
И еще, любопытно: станут ли машины, работающие на водороде, конкурентами электромобилей, работающих от аккумулятора? Специалисты считают, что места на дорогах хватит всем экологически чистым автомобилям. Будем надеяться, что через десяток лет на европейских дорогах появятся сотни тысяч машин, работающих на водороде.
Использованы статьи автора, Александра Раменского и Геннадия Дунина, опубликованные в «АБС-авто»
Источник https://1gai.ru/publ/516203-vodorod-v-avtomobilyah-opasnosti-i-slozhnosti-ispolzovaniya.html
Источник https://motorist.expert/toyota-engines/4jm.html
Источник https://abs-magazine.ru/article/o-vodorode-dvs-i-elektroprivode
Источник