Современный паровой двигатель
Я живу только на угле и воде и все еще обладаю достаточной энергией, чтобы разогнаться до 100 миль в час! Это именно то, что может сделать паровоз. Хотя эти гигантские механические динозавры в настоящее время вымерли на большей части мировых железных дорог, паровые технологии живут в сердцах людей, и локомотивы, подобные этому, до сих пор служат туристическими достопримечательностями на многих исторических железных дорогах.
Первое современные паровые машины были изобретены в Англии в начале 18 века и ознаменовали начало Промышленной Революции.
Сегодня мы вновь возвращаемся к энергии пара. Из-за особенностей конструкции в процессе сгорания топлива паровой двигатель дает меньше загрязнений, чем двигатель внутреннего сгорания. В данной публикации на видео посмотрите, как он работает.
Конструкция и механизм действия паровой машины
Паровой двигатель сжигает топливо во внешней камере сгорания. В результате тепло превращает воду в сжатый пар, который поступает в цилиндры и поршнем вращает коленчатый вал. Последний приводит в действие зубчатую передачу двигателя. Поскольку мотор не сжигает топливо внутри цилиндра, как это делает обычный двигатель, он может работать на любом топливе с меньшим количеством выхлопов.
Цилиндрический корпус современного парового двигателя сделан из алюминия. Рабочие устанавливают стержни для крепления 6 цилиндров из нержавеющей стали. Так как происходит постоянный контакт с паром, все детали сделаны из нержавеющих материалов.
Рабочий вставляет в каждый цилиндр поршень. Он алюминиевый, а головка и уплотнение, не дающие ему соприкасаться со стенками цилиндра, сделаны из жаростойкого углеродного волокна. Стойки поршней соединены с коленвалом в центре кожуха с помощью особой детали — крестовины. Она нужна, чтобы скорректировать ход поршня, создавая более ровное вращение вала и сообщая двигателю больше энергии.
В отличие от обычного автомобильного мотора, где цилиндры расположены в ряд, эти цилиндры имеют идеальную конфигурацию и потому равноудалены от центра. Это предотвращает деформацию мотора под действием высокой температуры.
Над крестовиной для еще более ровного хода коленчатого вала помещен противовес. Теперь над каждым поршнем устанавливаются толкатели, которые воздействуют на клапан, позволяющий входить в цилиндр и двигать поршень. Основание каждого толкателя вставляют в направляющее кольцо. Затем закрепляют головки цилиндров. В каждой из них находится паровой клапан. Толкатель вставляют в клапан и в завершение сборки устанавливают эксцентрик, который двигает толкатели при вращении вала.
Собранные на заводе двигатели подвергаются нескольким эксплуатационным испытаниям. Первый пробный пуск с применением сжатого воздуха для поиска утечек и проверки, все ли детали работают как нужно. Если все в порядке, то уже процесс повторяют уже с паром.
Такой паровой двигатель может давать энергию разным механизмам. От автомобилей и кораблей до электрогенераторов. В автомобиле ему не нужна трансмиссия. Он производит большое количество энергии вращения.
Теперь теплообменник — компонент, превращающий воду в пар, который и создает энергию. При помощи колеса стальную трубку превращают в спираль. Спираль скрепляют стальной проволокой, оставляя зазоры. Когда топливо сгорает, жар распространяется с внешней стороны витков и между ними, нагревая воду внутри трубки быстрее и эффективнее, чем при контакте только с верхней и нижней поверхностями. Результат — перегретый пар всего за 5 секунд.
Нужны 6 таких спиралей, каждая для питания одного цилиндра. Стопка спиралей образует первичный теплообменник двигателя. Для проверки используют любые виды топлива. Даже отходы, такие как отработанное моторное масло и использованное растительное масло из фритюрниц в ресторанах. Подойдет практически все, что горит. Топливо сгорает при низком давлении, а не высоком, как в бензиновом или дизельном двигателе. Это означает, что горение идет на производство пара, создавая гораздо меньше парниковых газов. Большинство углеводородов полностью и не нужно доливать воду, потому что конденсатор снова превращает пар в воду, реализуя повторное использование.
Вода также действует в качестве смазки для двигателя. Паровой машине не нужно моторное масло. Помимо сгорания топлива она способна работать на других источниках тепла, таких как солнечный жар и выбросы тепла из топок и двигателей. Круто или нет? Решайте сами.
Можно сделать из простой банки двигатель, об этом в отдельной статье. Готовые китайские генераторы и другие изобретения в этом китайском магазине.
Что питало старинный паровой двигатель?
Требуется энергия, чтобы делать абсолютно все, о чем вы только можете подумать: кататься на скейтборде, летать на самолете , ходить в магазины или водить машину по улице. Большая часть энергии, которую мы используем для транспортировки сегодня, поступает из нефти, но это было не всегда так. До начала 20-го века уголь был любимым топливом в мире, и он приводил в движение все: от поездов и кораблей до злополучных паровых самолетов, изобретенных американским ученым Сэмюэлем П. Лэнгли, ранним конкурентом братьев Райт. Что такого особенного в угле? Внутри Земли его много, поэтому он был относительно недорогим и широко доступным.
Уголь является органическим химическим веществом, что означает, что он основан на элементе углерода. Уголь образуется в течение миллионов лет, когда останки мертвых растений закапывают под камнями, сжимают под давлением и варят под действием внутреннего тепла Земли . Вот почему это называется ископаемое топливо . Комки угля — это действительно комки энергии. Углерод внутри них связан с атомами водорода и кислорода соединениями, называемыми химическими связями. Когда мы сжигаем уголь на огне, связи распадаются, и энергия выделяется в форме тепла.
Уголь содержит примерно вдвое меньше энергии на килограмм, чем более чистое ископаемое топливо, такое как бензин, дизельное топливо и керосин — и это одна из причин, по которой паровые двигатели должны сжигать так много.
Готовы ли паровые машины к эпическому возвращению?
Когда-то давно господствовал паровой двигатель — сначала в поездах и тяжелых тракторах, как вы знаете, но в конечном итоге и в автомобилях. Сегодня это трудно понять, но на рубеже 20-го века более половины автомобилей в США работали на парах. Паровой двигатель был настолько усовершенствован, что в 1906 году паровая машина под названием «Ракета Стэнли» даже имела рекорд скорости на земле — опрометчивая скорость 127 миль в час!
Теперь вы можете подумать, что паровая машина имела успех только потому, что двигатели внутреннего сгорания (ДВС) еще не существовали, но на самом деле паровые машины и автомобили ДВС были разработаны одновременно. Поскольку у инженеров уже был 100-летний опыт работы с паровыми двигателями, у паровой машины был довольно большой старт. В то время как ручные коленчатые двигатели ломали руки несчастных операторов, к 1900 году паровые машины были уже полностью автоматизированы — и без сцепления или коробки передач (пар обеспечивает постоянное давление, в отличие от хода поршня ДВС), очень легким в управлении. Единственное предостережение, что вы должны были подождать несколько минут, чтобы котел нагрелся.
Однако через несколько коротких лет Генри Форд придет и все изменит. Хотя паровой двигатель технически превосходил ДВС, он не мог сравниться с ценой серийных Фордов. Производители паровых автомобилей пытались переключать передачи и продавать свои автомобили как премиальные, роскошные продукты, но к 1918 году Ford Model T был в шесть раз дешевле, чем Steanley Steamer (самая популярная паровая машина в то время). С появлением электродвигателя стартера в 1912 году и постоянным повышением эффективности ДВС прошло совсем немного времени, пока паровая машина исчезла с наших дорог.
Под давлением
В течение последних 90 лет паровые машины оставались на грани исчезновения, а гигантские звери выкатывались на показы старинных автомобилей, но не намного. Спокойно, однако, на заднем плане исследования незаметно продвигались вперед — отчасти из-за нашей зависимости от паровых турбин в производстве электроэнергии, а также потому, что некоторые люди считают, что паровые двигатели действительно могут превосходить двигатели внутреннего сгорания.
ДВС имеют внутренние недостатки: им требуется ископаемое топливо, они производят много загрязнений, и они шумные. Паровые двигатели, напротив, очень тихие, очень чистые и могут использовать практически любое топливо. Паровые двигатели благодаря постоянному давлению не требуют зацепления — вы получаете максимальный крутящий момент и ускорение мгновенно, в состоянии покоя. Для городского вождения, где остановка и запуск потребляют огромное количество ископаемого топлива, непрерывная мощность паровых двигателей может быть очень интересной.
Технологии прошли долгий путь и с 1920-х годов — в первую очередь, мы теперь мастера материалов . Оригинальным паровым машинам требовались огромные, тяжелые котлы, чтобы выдерживать жару и давление, и в результате даже небольшие паровые машины весили пару тонн. С современными материалами паровые машины могут быть такими же легкими, как их двоюродные братья. Добавьте современный конденсатор и какой-нибудь котел-испаритель, и вы сможете построить паровую машину с приличной эффективностью и временем прогрева, которое измеряется секундами, а не минутами.
Цикл Ранкина, на котором основан паровой двигатель Cyclone Technologies
В последние годы эти достижения объединились в некоторые захватывающие события. В 2009 году британская команда установила новый рекорд скорости ветра на паровой тяге в 148 миль в час, наконец, побив рекорд ракеты Стэнли, который стоял более 100 лет. В 1990-х годах подразделение Volkswagen R & D под названием Enginion заявило, что оно построило паровой двигатель, который был сопоставим по эффективности с ДВС, но с меньшими выбросами. В последние годы Cyclone Technologies утверждает, что она разработала паровой двигатель, который в два раза эффективнее, чем ДВС. На сегодняшний день, однако, ни один двигатель не нашел свой путь в коммерческом автомобиле.
Двигаясь вперед, маловероятно, что паровые машины когда-либо сядут с двигателя внутреннего сгорания, хотя бы из-за огромного импульса Big Oil. Однако однажды, когда мы наконец решим серьезно взглянуть на будущее личного транспорта, возможно, тихая, зеленая, скользящая грация энергии пара получит второй шанс.
Паровые двигатели нашего времени
Инновационная энергия. В настоящее время nanoFlowcell® является самой инновационной и самой мощной системой накопления энергии для мобильных и стационарных приложений. В отличие от обычных батарей, nanoFlowcell® снабжается энергией в виде жидких электролитов (bi-ION), которая может храниться вдали от самой ячейки. Выхлоп автомобиля с этой технологией — водяной пар.
Как и обычная проточная ячейка, положительно и отрицательно заряженные электролитические жидкости хранятся отдельно в двух резервуарах и, как и обычная проточная ячейка или топливный элемент, прокачиваются через преобразователь (действительный элемент системы nanoFlowcell) в отдельных контурах.
Здесь две цепи электролита разделены только проницаемой мембраной. Обмен ионов происходит, как только растворы положительного и отрицательного электролитов проходят друг с другом по обе стороны мембраны конвертера. Это преобразует химическую энергию, связанную в би-ион, в электричество, которое затем напрямую доступно для потребителей электроэнергии.
Подобно водородным транспортным средствам, «выхлоп», производимый электромобилями nanoFlowcell, представляет собой водяной пар. Но являются ли выбросы водяного пара от будущих электромобилей экологически чистыми?
Критики электрической мобильности все чаще ставят под сомнение экологическую совместимость и устойчивость альтернативных источников энергии. Для многих автомобильные электроприводы являются посредственным компромиссом вождения с нулевым уровнем выбросов и экологически вредных технологий. Обычные литий-ионные или металлогидридные батареи не являются ни устойчивыми, ни экологически совместимыми — ни в производстве, ни в использовании, ни в переработке, даже если реклама предполагает чистую «электронную мобильность».
nanoFlowcell Holdings также часто задают вопрос об устойчивости и экологической совместимости технологии nanoFlowcell и би-ионных электролитов. И сам nanoFlowcell, и растворы электролитов bi-ION, необходимые для его питания, производятся экологически безопасным способом из экологически чистого сырья. В процессе эксплуатации технология nanoFlowcell полностью нетоксична и никоим образом не наносит вреда здоровью. Би-ИОН, который состоит из слабосолевого водного раствора (органические и минеральные соли, растворенные в воде) и фактических энергоносителей (электролитов), также безопасен для окружающей среды при использовании и переработке.
Как работает привод nanoFlowcell в электромобиле? Подобно бензиновому автомобилю, раствор электролита потребляется в электрическом транспортном средстве с нанофлоуцеллом. Внутри наноотвода (фактической проточной ячейки) один положительно и один отрицательно заряженный раствор электролита прокачивается через клеточную мембрану. Реакция — ионный обмен — имеет место между положительно и отрицательно заряженными растворами электролита. Таким образом, химическая энергия, содержащаяся в би-ионах, выделяется в виде электричества, которое затем используется для привода электродвигателей. Это происходит до тех пор, пока электролиты прокачиваются через мембрану и реагируют. В случае привода QUANTiNO с нанофлоуцеллом одного резервуара с электролитной жидкостью достаточно для более чем 1000 километров. После опустошения бак должен быть пополнен.
Какие «отходы» образуются электрическим транспортным средством с нанофлоуцеллом? В обычном транспортном средстве с двигателем внутреннего сгорания при сжигании ископаемого топлива (бензина или дизельного топлива) образуются опасные выхлопные газы — главным образом, диоксид углерода, оксиды азота и диоксид серы — накопление которых было определено многими исследователями как причина изменения климата. менять. Тем не менее, единственные выбросы, выделяемые транспортным средством nanoFlowcell во время вождения, состоят — почти как транспортное средство, работающее на водороде — почти полностью из воды.
После того, как ионный обмен произошел в наноячейке, химический состав раствора электролита bi-ION практически не изменился. Он больше не является реактивным и, таким образом, считается «потраченным», поскольку его невозможно перезарядить. Поэтому для мобильных применений технологии nanoFlowcell, таких как электромобили, было принято решение микроскопически испарять и высвобождать растворенный электролит во время движения автомобиля. При скорости свыше 80 км / ч емкость для отработанной электролитической жидкости опорожняется через чрезвычайно мелкие распылительные форсунки с использованием генератора, приводимого в движение энергией привода. Электролиты и соли предварительно механически отфильтровываются. Выпуск очищенной в настоящее время воды в виде паров холодной воды (микротонкодисперсный туман) полностью совместим с окружающей средой. Фильтр меняется примерно на 10 г.
Преимущество этого технического решения состоит в том, что бак транспортного средства опустошается при движении в обычном режиме и может быть легко и быстро пополнен без необходимости откачки.
Альтернативное решение, которое является несколько более сложным, состоит в том, чтобы собрать раствор отработанного электролита в отдельном резервуаре и отправить его на переработку. Это решение предназначено для подобных стационарных приложений nanoFlowcell.
Однако сейчас многие критики предполагают, что водяной пар такого типа, который выделяется при конверсии водорода в топливных элементах или в результате испарения электролитической жидкости в случае наноотвода, теоретически является парниковым газом, который может оказать влияние на изменение климата. Как возникают такие слухи?
Мы рассматриваем выбросы водяного пара с точки зрения их экологической значимости и задаем вопрос о том, сколько еще водяного пара можно ожидать в результате широкого использования транспортных средств с нанофлоуцелл по сравнению с традиционными технологиями привода и могут ли эти выбросы H 2 O иметь негативное воздействие на окружающую среду.
Наиболее важные природные парниковые газы — наряду с CH 4 , O 3 и N 2 O — водяной пар и CO 2, Углекислый газ и водяной пар невероятно важны для поддержания глобального климата. Солнечное излучение, которое достигает земли, поглощается и нагревает землю, которая в свою очередь излучает тепло в атмосферу. Однако большая часть этого излучаемого тепла уходит обратно в космос из земной атмосферы. Углекислый газ и водяной пар обладают свойствами парниковых газов, образуя «защитный слой», который предотвращает утечку всего излучаемого тепла обратно в космос. В естественном контексте этот парниковый эффект имеет решающее значение для нашего выживания на Земле — без углекислого газа и водяного пара атмосфера Земли была бы враждебна для жизни.
Парниковый эффект становится проблематичным только тогда, когда непредсказуемое вмешательство человека нарушает естественный цикл. Когда в дополнение к естественным парниковым газам люди вызывают более высокую концентрацию парниковых газов в атмосфере, сжигая ископаемое топливо, это увеличивает нагрев земной атмосферы.
Являясь частью биосферы, люди неизбежно влияют на окружающую среду и, следовательно, на климатическую систему, самим своим существованием. Постоянный рост численности населения Земли после каменного века и создания поселений несколько тысяч лет назад, связанный с переходом от кочевой жизни к сельскому хозяйству и животноводству, уже повлиял на климат. Почти половина оригинальных лесов и лесов в мире была очищена для сельскохозяйственных целей. Леса — наряду с океанами — главный производитель водяного пара.
Водяной пар является основным поглотителем теплового излучения в атмосфере. Водяной пар составляет в среднем 0,3% по массе атмосферы, углекислый газ — только 0,038%, что означает, что водяной пар составляет 80% массы парниковых газов в атмосфере (около 90% по объему) и, с учетом от 36 до 66% — самый важный парниковый газ, обеспечивающий наше существование на земле.
Таблица 3: Атмосферная доля наиболее важных парниковых газов, а также абсолютная и относительная доля повышения температуры (Циттель)
* Источник: РКИК ООН/
Наряду с естественным водяным паром, самые большие антропогенные — антропогенные — выбросы водяного пара образуются в результате искусственного орошения (МГЭИК). Тем не менее, широко распространенная вырубка лесов значительно снижает выброс водяного пара, который будет иметь эффект во много раз больше.
Антропогенный вклад водяного пара не учитывается в расчетах климатической модели, поскольку по сравнению с естественными выбросами в результате испарения эта доля составляет всего 0,005%, что делает его неактуальным. Это контрастирует с антропогенными выбросами углекислого газа, доля которых составляет 4%, и они оказывают значительное влияние на природный цикл.
Следует также сказать, что доля CO 2, создаваемая дорожным движением во всем мире, составляет в среднем около 11%. Что изменилось бы, если бы больше автомобилей испускало водяной пар, чем CO 2 ?
Следующие оценки были сделаны в отношении абсолютного количества выбросов водяного пара в Германии:
На основании среднегодового количества осадков около 780 мм и площади поверхности ок. 360 000 км 2 , объем осадков составляет около 280 млрд. Тонн. Природные выбросы водяного пара на км 2 и год составляют около 0,35 x 10 6 тонн. Исходя из общей площади поверхности, это составляет около 125 000 x 10 6 тонн водяного пара в год. Это было рассчитано в предположении, что ок. 50% общего количества осадков испаряется, а оставшиеся 50% поступают в море через грунтовые и поверхностные воды.
Если бы все 45,1 миллиона легковых автомобилей, зарегистрированных в Германии, были переведены на привод nanoFlowcell, средний пробег составил бы около 1000 литров электролита на испаряемое транспортное средство каждый год, выделяя примерно 0,01% водяного пара, возникающего естественным образом в Германии. С глобальной точки зрения, огромное количество естественного испарения — особенно из океанов и лесов — делает общую антропогенную долю водяного пара абсолютно незначительной (менее 0,005%).
Кроме того, парниковый эффект водяного пара зависит прежде всего от его концентрации в различных слоях атмосферы. Чем дальше удаляется от поверхности земли, тем сильнее эффект парниковых газов. Ученые согласны с тем, что потенциал парниковых газов антропогенного водяного пара вблизи земли следует считать незначительным. Водяной пар в стратосфере, с другой стороны, где он испускается самолетами, представляет скрытый дополнительный потенциал парниковых газов.
Мы утверждаем, что QUANTiNO и QUANT FE не свободны от выбросов — они по-прежнему образуют воду в качестве «отходов» (а также небольшое количество перерабатываемого электролита и солей), но даже если все транспортные средства в мире были переведены на привод nanoFlowcell, в результате выбросы водяного пара не будут влиять на изменение климата. Они будут производить меньше водяного пара, чем количество вырубленных лесов из года в год.
Являясь экологически совместимым и устойчивым источником энергии, nanoFlowcell внесет позитивный вклад в глобальный климат. Каждое электрическое транспортное средство, приводимое в действие нанофлоуцеллом, которое заменяет обычное транспортное средство двигателем внутреннего сгорания, способствует снижению роста концентрации оксидов углерода, оксидов азота и диоксида серы.
Как переделать двигатель внутреннего сгорания в паровой
Как переделать двигатель внутреннего сгорания в паровой двигатель
Паровой двигатель своими руками из подручных средств
Когда уже доделывал свой газогенератор — наткнулся в интернет на книжку «Как самому сделать паровой двигатель до 1.5л/с» книжка 1903 года (. ) выпуска, написана через «ять», размеры в вершках и аршинах, но содержит информацию, достаточную для изготовления своего парового двигателя, с чертежами и пояснениями
Саму книгу полностью в статье публиковать не буду, ссылку на нее дам в конце.
Идея вот в чем: 100 лет назад это можно было сделать методом пайки из ружейных гильз, обрезков труб и самовара в качестве парового котла, давление в котором (по книжке) составляло всего 2-3 атмосферы.
В общем — из подручных тогда средств (есть вещи, которые и через 100 лет не меняются).
При этом автор книги советовал использовать паровой двигатель для аэрации воды в аквариуме или приспособить к нему динамо для выработки электроэнергии. Или установить на лодку. (Приводятся двигатели разной мощности).
Но мы-то живем немного в другом веке: сварочный инвертор не редкость, автомобильный хлам — в избытке, простой газовый баллон — держит поболе 2 атмосфер. В общем — развернуться есть куда, а скажем мотоциклетный двигатель — это уже готовый паровой со всеми необходимыми шатунами, поршнем и подшипниками, только надо сделать систему газораспределения (и продумать систему смазки):
Даже если за плечами спортсмена уже есть богатый опыт создания судомоделей-копий, все равно при проектировании нового микросудна он неизбежно сталкивается с проблемой — какой двигатель ставить на будущую копию! Калильный или компрессионный — возникнут проблемы с топливом, шумоглушением и вибрациями. Электрический! Но и он не без недостатков, особенно с учетом большой массы электроаккумуляторов.
А почему не пойти по наиболее колийному пути и на копиях, например, пароходов не использовать настоящий миниатюрный паровой двигатель! Попытка реализации этой поначалу кажущейся трудноосуществимой идеи принесла очень интересные результаты.
Прежде всего — непосредственно о двигателе (в паровую установку входит еще немало крупных узлов). Проще его сделать на базе любого из моделистских ДВС достаточного рабочего объема. Кстати, хорошо подойдет для этих целей такой мотор, как «Комета» МД-5, давно зарекомендовавший себя в штатном калильном исполнении как совершенно неработоспособный. Для парового варианта лучше всего изготовить новую гильзу цилиндра и выполнить в ней лишь выпускные окна для выхода пара. Перепускные (продувочные) окна не нужны — при их отсутствии картер мотора окажется закрытым, что позволит сохранять во время работы установки в объеме картера достаточное количество масла.
Следующий этап работы над паросиловой установкой — изготовление двух баков: для воды и бензина или другого жидкого топлива. Водяной бак выполняется пайкой из толстой листовой латуни или нержавейки толщиной не менее 0,8—1 мм (в крайнем случае подойдет толстое кровельное железо). Выбор материала обусловлен тем, что водяной бак будет при функционировании установки находиться под тем же давлением, что и вся паровая система. Топливный бак может быть не столь прочным и меньшим по объему. Его размеры подбираются практическим путем.
Один из важнейших узлов установки — паровой котел. Его конструкция ясна из рисунков, а материалы и технологии изготовления элементов котла каждый может выбрать, исходя из собственных пожеланий и возможностей.
Паровой котел:
1 — трубка подвода топлива (медь, Ø 3 мм), 2 — теплообменник-испаритель, 3 — трубка питания форсунки (медь, Ø 3 мм), 4 — трубка отбора пара, 5 — испаритель воды (трубка Ø 3—4 мм), 6 — жалюзи подвода воздуха к пламени, 7 — форсунка, 8 — узел крепления форсунки, 9 — нижняя камера, 10 — трубка подвода воды к испарителю, 11 —корпус-труба.
Теплообменник — испаритель топлива может быть изготовлен из медной коробки от старого барометра или в виде мотка тонкой медной трубки. Топливораспыляющая форсунка переделывается из туалетного пульверизатора.
Паровой клапан, монтируемый в головке двигателя:
1 — трубка подвода пара от котла к двигателю, 2 — латунный корпус клапана, 3 — пружина, 4 — шарик-клапан. Для работы клапана в днище поршня двигателя нужно по центру смонтировать шток-толкатель, который при подходе поршня к верхней мертвой точке должен отжимать шарик-клапан вверх, впуская таким образом очередную порцию пара под давлением.
Доработка штатной головки цилиндра двигателя.
Водяной бак:
1 — корпус (кровельное железо или листовая латунь), 2 — заливная горловина (закрывается герметично), 3— вентиль (ниппель от велосипеда или мотоцикла), 4 — расходный кран-вентиль.
Подготовка к испытаниям паровой машины несложна. В картер переделанного ДВС заливают машинное масло; в штатный диффузор карбюратора вставляют заглушку (масло необходимо заменять примерно через 50 часов работы машины). Баки заполняются соответственно водой (лучше дистиллированной, что исключит образование накипи в паровой системе) и бензином любой марки. Оба бака герметично закрывают. Затем в нижнюю часть парового котла укладывают подожженную таблетку сухого спирта, а через впаянные в баки ниппеля накачивают в них воздух, создавая избыточное давление. Теперь можно открывать расходные краны-вентили. Через некоторое время, когда разогреется теплообменник испарения топлива, пламевая система котла перейдет на автоматический режим, постоянно подавая под давлением бензин к соплу форсунки. Чтобы заставить работать двигатель, достаточно пару раз провернуть его коленвал. Обороты мотора регулируют подачей воды и высотой пламени.
Новая паросиловая установка уже прошла успешные испытания на копии парохода «Володарский» (см. «М-К» № 11 за 1990 год). Модель прекрасно смотрится на ходу, неизменно привлекая внимание и зрителей, и спортсменов. Но главное — копия парохода теперь без всяких смысловых натяжек является также пароходом!
Как из ДВС сделать солнечно-паровой двигатель
Американцы Мэтт Беллу и Бен Купер переделали обычный двигатель внутреннего сгорания для работы от солнечного излучения. Первый вопрос, который возникает при виде этого модифицированного ДВС, — зачем? Действительно, зачем вводить движущиеся части, потери на трение и прочее, когда можно обойтись без них? Этот обычный двухтактник ультимативно уникален: по сути, он паровой, да на солнечной энергии!
Изобретатели отвечают двояко. Во-первых, пока гелиоэлектростанции на фотоэлементах выгодны только при достижении определённого масштаба. А как быть мелким потребителям? Зачем им развёртывать инверторы и прочую инфраструктуру, необходимую для получения 220 В на выходе? Им нужно что-то менее громоздкое и дорогостоящее. Во-вторых, потери с движущимся частями, утверждают конструкторы, пока не выше, чем без них. Коммерчески доступные фотоэлементы имеют КПД 15% — и ровно столько же, говорят они, показал их первый прототип, HydroICE (Hydro Internal Clean Engine) — переделанный двухтактный бензиновый двигатель от скутера объёмом 31 см?.
Схема работы двигателя проста, но при всём том КПД заявлен на уровне самых изощрённых массовых фотоэлементов.
Нечего и говорить, стоимость двухтактников и фотоэлементов трудно сравнивать. По расчётам изобретателей, их система при равном КПД будет иметь вчетверо меньшую цену, чем такой же мощности фотоэлектрическая система (фотоэлемент плюс инвертор). В сочетании с никель-кадмиевым аккумулятором этот двигатель позволяет выйти на новый уровень генерации и хранения электроэенергии.
Подход в чём-то сходен с уже освещавшейся генерацией пара концентрированным солнечным светом. Однако там используются наночастицы, позволяющие получать пар из воды безо всякого масла, что может быть полезным и для HydroICE, ведь тогда из схемы исчезает сепаратор, да и КПД (благодаря более «прямой» схеме преобразования) может подрасти.
Паровые двигатели возврат к прошлому?
Вы здесь
Страницы
Вопросы задавать можно только после регистрации. Войдите или зарегистрируйтесь, пожалуйста.
ПАРОВАЯ МАШИНА ИЗ СТАРОГО ДВИГАТЕЛЯ
С отслужившими автомобилями-пенсионерами церемониться нынче не принято. Можно завести в лес подальше от дома и бросить на “съедение” микроорганизмам. Если повезет, в утиль, на переплавку. Что касается кузова и прочих частей, может быть, лучшей участи они уже и недостойны. А вот с ДВС не горячитесь, он вам еще послужит.’Пора переходить на паровую тягу’, — полагают наши лорды-изобретатели из Рязани.
Проблема энергообеспечения знакома многим. Особенно в сельской местности, в деревнях, в отдаленных районах, где напряжение в сети, если оно вообще есть, редко поднимается чуть выше 150 В, а то и вовсе пропадает, измученное наледями и ветрами, изношенными сетями, трансформаторами, гнилыми опорами и пр. При таком скудном питании не работает или быстро ломается бытовая техника, становятся неэффективными обогреватели, а с компьютером и вовсе беда.
Выход, конечно, есть — мобильные генераторы, работающие на бензине или солярке. Только дорого это обходится: и сам агрегат, и особенно топливо.
Когда-то, на старте, ДВС стремительно обогнал паровую машину по нескольким важным параметрам. Экономичность, компактность, быстрый запуск заставили автомобилистов мириться с дороговизной горючего. Чтобы уменьшить шумность пришлось разработать изощренные системы глушения. Крайне невыгодные тяговые характеристики ДВС обернулись применением дорогих и тяжелых коробок передач и трансмиссий. И тем не менее…
Последний (к сожалению) паромобиль американской фирмы “Добл”, выпущенный в 30-х гг. прошлого века, обладал удивительными характеристиками. Плавно поворачивая дроссельный клапан, водитель мог так мягко регулировать скорость, что пассажиры не замечали ускорения и торможения. Но можно было ускорить автомобиль настолько резко, что рвались шины. Тот же диапазон регулирования скорости полностью сохранялся и на заднем ходу. Причем лишь прикосновения к педалям было достаточно для переключения с полного переднего на полный задний.
Такие поразительные свойства паромобиля получаются автоматически, как следствие чрезвычайно выгодных тяговых характеристик паровой машины, способной на малых оборотах создавать большой крутящий момент на колесах.
И хотя паровик пока по-прежнему остается на задворках технического прогресса, именно эти качества возбуждают растущий интерес и просто поклонников, и изобретателей. Свидетельство тому — появление новых патентов в области паровой техники. Сообщается, например, о разработке американского изобретателя Вильямса. На его паромобиле нет ни сцепления, ни коробки передач, ни стартера. Простого поворота клапана достаточно, чтобы за 10 с. ускорить экипаж до 100 км/ч. Мощность парового двигателя 230 л.с. при 4800 об/мин. Максимальная скорость 280 км/ч. Всего 50 л воды хватает на 1500 км пробега.
Российскому изобретателю Н.Егину удалось свести в одном агрегате обе концепции: паровик и ДВС. Оказалось, что любой ДВС надежно работает от подходящего парогенератора. Для этого достаточно сделать нехитрое золотниковое устройство подачи пара в цилиндры — и пожалуйста, снимай мощность с коленчатого вала. Можно напрямую или более универсальным способом — с помощью электрогенератора.
В новой роли прекрасно чувствует себя даже очень потрепанный ДВС. Дело в том, что скорость вращения двигателя теперь составляет всего 1000 об/мин. Сравните с 5—6 тыс. у двигателей современных автомобилей. Но не только умеренные обороты причина феноменальной надежности паровой установки. Температура в цилиндрах машины в 5—6 раз ниже, чем в ДВС. Пар, в отличие от горючей смеси, не взрывается, не разрушает поршень, а, расширяясь, мягко давит на него. Отсюда и плавность хода, и невысокие требования к материалам и допускам.
В новой концепции Н.Егин в качестве парогенератора использует другое свое важное изобретение — тепловые термохимические установки (ТХУ) (ИР, 12, 07). Основа ТХУ — добротный чугунный паровой котел, которому нет износа. Такие котлы по-прежнему делают в России. Отслуживших свое ДВС тоже хватает: мотоциклы, “москвичи”, “Волги”, “жигули”, локомотивы и судовые дизели. Модельный ряд старых ДВС перекрывает все разумные потребности: от 1 кВт для садового домика до 2 мВт, дающих тепло и электроэнергию целому поселку. Такие большие мощности можно получить, если к котлу ТХУ с рабочим давлением 7—9 атм подключить турбину российского производства, например радиального типа. В ней высочайшая надежность (60 тыс. ч до ремонта) сочетается с ценой на порядок более низкой, чем у зарубежных аналогов.
Идея вернуть в строй колоссальный ресурс старых ДВС выглядит поистине революционной. До этого не додумались даже на родине парового двигателя, где членами клубов многочисленных любителей и поклонников паровика являются даже лорды.
В паровую машину можно превратить не только автомобильный двигатель, но и мощный дизель, отработавший свой век на производстве, сэкономив тем самым тонны солярки. А в глухой глубинке, куда топливо можно доставить только на вертолете, это настоящее спасение.
Самыми существенными недостатками паровой тяги считаются большой вес и малая экономичность. Естественно, она становится выгоднее на мощностях порядка 800 л.с., когда теплоту отработанного пара можно использовать для отопления или технологических нужд. Именно такие требования предъявляют к тягачам и вездеходам на Крайнем Севере. А тандем ДВС и ТХУ (напомним, это тепловые термохимические установки “ЭРА”) максимально расширяет модельный ряд и уже реально вписывается в габариты современного автомобиля.
Что же касается экономичности, паровая машина с ее низкими температурами пара не может сравниться с ДВС по расходу топлива на километр пути. Зато котел можно топить хоть торфом, хоть соломой, а “ЭРА” и вовсе будет рада и пластику, и старым калошам.
По подсчетам изобретателя, расходы на перевод ДВС в режим паровой машины окупятся за полгода. Вам обеспечены лет на 20—25 источник тока мощностью 1—25 кВт и чистота вокруг. Свалки могут превратиться в стратегический энергоресурс.
Уже есть фирма, конструирующая на заказ такие “паровозы”, но это капля в море. Н.Егин полагает, что от деклараций и бесконечных экспериментов с нетрадиционными источниками энергии в России надо переходить к экспертной технической и экономической их оценке в целых отраслях, например ЖКХ, и приступать к планомерному внедрению.
Е.Рогов
Китайцы и тут нас обошли.
извиняюсь. Попытался вставить фото не получилось. Попробую еще раз.
Вот это ЧУДО. прям в музей или туристов по Москве катать- озолотишься.
консультации по тепличным технологиям. Есть вопрос? — Задай его здесь!
Как переделать бензиновый двигатель в паровой
Паровой двигатель для ВАЗ 2109 своими руками — первый запуск!
К ак говорится, народ у нас в стране — талантливый и рукастый. Ребятам с Ютуб-канал Гараж 54 совсем не давно удалось запустить двигатель на сжатом воздухе! Но, как это часто бывает, они столкнулись с сложностями. Объём ресивера оказался слишком мал, чтобы поехать на такой «тяге». Поэтому, они решили идти другим путём.
Они решили сделать паровой котёл, который смог бы обеспечивать достаточное кол-во пара и нужное давление, чтобы не только запустить двигатель, но и проехать на нём. Конечно, нужны достаточно серьёзные масштабы и качество реализации, потому что, если у тебя будут отверстия, то давления хорошего — не получить.
После довольно долгих работ по устранению недостатков и доводке конструкции, ребята всё-таки представили свой вариант «паровоза», который должен был бы обеспечивать достаточным давлением двигатель отечественного автомобиля. Обеспечивать паром и крутить его.
Пар напрямую идёт к двигателю. Осталось только заправить всё водой, раскочегарить печь и вперёд. В светлое будущее, где двигатель авто крутит пар)
И оно заработало! Да ещё как, давление всего в 2 бара пара во всю раскрутило двигатель. Они шли к успеху. И решили попробовать увеличить давление.
Но, при повторном «пуске» уже произошла поломка. Но согласитесь, даже такой эксперимент достоин внимания.
Как из ДВС сделать солнечно-паровой двигатель
Американцы Мэтт Беллу и Бен Купер переделали обычный двигатель внутреннего сгорания для работы от солнечного излучения. Первый вопрос, который возникает при виде этого модифицированного ДВС, — зачем? Действительно, зачем вводить движущиеся части, потери на трение и прочее, когда можно обойтись без них? Этот обычный двухтактник ультимативно уникален: по сути, он паровой, да на солнечной энергии!
Изобретатели отвечают двояко. Во-первых, пока гелиоэлектростанции на фотоэлементах выгодны только при достижении определённого масштаба. А как быть мелким потребителям? Зачем им развёртывать инверторы и прочую инфраструктуру, необходимую для получения 220 В на выходе? Им нужно что-то менее громоздкое и дорогостоящее. Во-вторых, потери с движущимся частями, утверждают конструкторы, пока не выше, чем без них. Коммерчески доступные фотоэлементы имеют КПД 15% — и ровно столько же, говорят они, показал их первый прототип, HydroICE (Hydro Internal Clean Engine) — переделанный двухтактный бензиновый двигатель от скутера объёмом 31 см?.
Схема работы двигателя проста, но при всём том КПД заявлен на уровне самых изощрённых массовых фотоэлементов.
Нечего и говорить, стоимость двухтактников и фотоэлементов трудно сравнивать. По расчётам изобретателей, их система при равном КПД будет иметь вчетверо меньшую цену, чем такой же мощности фотоэлектрическая система (фотоэлемент плюс инвертор). В сочетании с никель-кадмиевым аккумулятором этот двигатель позволяет выйти на новый уровень генерации и хранения электроэенергии.
Подход в чём-то сходен с уже освещавшейся генерацией пара концентрированным солнечным светом. Однако там используются наночастицы, позволяющие получать пар из воды безо всякого масла, что может быть полезным и для HydroICE, ведь тогда из схемы исчезает сепаратор, да и КПД (благодаря более «прямой» схеме преобразования) может подрасти.
Паровые двигатели возврат к прошлому?
Вы здесь
Страницы
Вопросы задавать можно только после регистрации. Войдите или зарегистрируйтесь, пожалуйста.
ПАРОВАЯ МАШИНА ИЗ СТАРОГО ДВИГАТЕЛЯ
С отслужившими автомобилями-пенсионерами церемониться нынче не принято. Можно завести в лес подальше от дома и бросить на “съедение” микроорганизмам. Если повезет, в утиль, на переплавку. Что касается кузова и прочих частей, может быть, лучшей участи они уже и недостойны. А вот с ДВС не горячитесь, он вам еще послужит.’Пора переходить на паровую тягу’, — полагают наши лорды-изобретатели из Рязани.
Проблема энергообеспечения знакома многим. Особенно в сельской местности, в деревнях, в отдаленных районах, где напряжение в сети, если оно вообще есть, редко поднимается чуть выше 150 В, а то и вовсе пропадает, измученное наледями и ветрами, изношенными сетями, трансформаторами, гнилыми опорами и пр. При таком скудном питании не работает или быстро ломается бытовая техника, становятся неэффективными обогреватели, а с компьютером и вовсе беда.
Выход, конечно, есть — мобильные генераторы, работающие на бензине или солярке. Только дорого это обходится: и сам агрегат, и особенно топливо.
Когда-то, на старте, ДВС стремительно обогнал паровую машину по нескольким важным параметрам. Экономичность, компактность, быстрый запуск заставили автомобилистов мириться с дороговизной горючего. Чтобы уменьшить шумность пришлось разработать изощренные системы глушения. Крайне невыгодные тяговые характеристики ДВС обернулись применением дорогих и тяжелых коробок передач и трансмиссий. И тем не менее…
Последний (к сожалению) паромобиль американской фирмы “Добл”, выпущенный в 30-х гг. прошлого века, обладал удивительными характеристиками. Плавно поворачивая дроссельный клапан, водитель мог так мягко регулировать скорость, что пассажиры не замечали ускорения и торможения. Но можно было ускорить автомобиль настолько резко, что рвались шины. Тот же диапазон регулирования скорости полностью сохранялся и на заднем ходу. Причем лишь прикосновения к педалям было достаточно для переключения с полного переднего на полный задний.
Такие поразительные свойства паромобиля получаются автоматически, как следствие чрезвычайно выгодных тяговых характеристик паровой машины, способной на малых оборотах создавать большой крутящий момент на колесах.
И хотя паровик пока по-прежнему остается на задворках технического прогресса, именно эти качества возбуждают растущий интерес и просто поклонников, и изобретателей. Свидетельство тому — появление новых патентов в области паровой техники. Сообщается, например, о разработке американского изобретателя Вильямса. На его паромобиле нет ни сцепления, ни коробки передач, ни стартера. Простого поворота клапана достаточно, чтобы за 10 с. ускорить экипаж до 100 км/ч. Мощность парового двигателя 230 л.с. при 4800 об/мин. Максимальная скорость 280 км/ч. Всего 50 л воды хватает на 1500 км пробега.
Российскому изобретателю Н.Егину удалось свести в одном агрегате обе концепции: паровик и ДВС. Оказалось, что любой ДВС надежно работает от подходящего парогенератора. Для этого достаточно сделать нехитрое золотниковое устройство подачи пара в цилиндры — и пожалуйста, снимай мощность с коленчатого вала. Можно напрямую или более универсальным способом — с помощью электрогенератора.
В новой роли прекрасно чувствует себя даже очень потрепанный ДВС. Дело в том, что скорость вращения двигателя теперь составляет всего 1000 об/мин. Сравните с 5—6 тыс. у двигателей современных автомобилей. Но не только умеренные обороты причина феноменальной надежности паровой установки. Температура в цилиндрах машины в 5—6 раз ниже, чем в ДВС. Пар, в отличие от горючей смеси, не взрывается, не разрушает поршень, а, расширяясь, мягко давит на него. Отсюда и плавность хода, и невысокие требования к материалам и допускам.
В новой концепции Н.Егин в качестве парогенератора использует другое свое важное изобретение — тепловые термохимические установки (ТХУ) (ИР, 12, 07). Основа ТХУ — добротный чугунный паровой котел, которому нет износа. Такие котлы по-прежнему делают в России. Отслуживших свое ДВС тоже хватает: мотоциклы, “москвичи”, “Волги”, “жигули”, локомотивы и судовые дизели. Модельный ряд старых ДВС перекрывает все разумные потребности: от 1 кВт для садового домика до 2 мВт, дающих тепло и электроэнергию целому поселку. Такие большие мощности можно получить, если к котлу ТХУ с рабочим давлением 7—9 атм подключить турбину российского производства, например радиального типа. В ней высочайшая надежность (60 тыс. ч до ремонта) сочетается с ценой на порядок более низкой, чем у зарубежных аналогов.
Идея вернуть в строй колоссальный ресурс старых ДВС выглядит поистине революционной. До этого не додумались даже на родине парового двигателя, где членами клубов многочисленных любителей и поклонников паровика являются даже лорды.
В паровую машину можно превратить не только автомобильный двигатель, но и мощный дизель, отработавший свой век на производстве, сэкономив тем самым тонны солярки. А в глухой глубинке, куда топливо можно доставить только на вертолете, это настоящее спасение.
Самыми существенными недостатками паровой тяги считаются большой вес и малая экономичность. Естественно, она становится выгоднее на мощностях порядка 800 л.с., когда теплоту отработанного пара можно использовать для отопления или технологических нужд. Именно такие требования предъявляют к тягачам и вездеходам на Крайнем Севере. А тандем ДВС и ТХУ (напомним, это тепловые термохимические установки “ЭРА”) максимально расширяет модельный ряд и уже реально вписывается в габариты современного автомобиля.
Что же касается экономичности, паровая машина с ее низкими температурами пара не может сравниться с ДВС по расходу топлива на километр пути. Зато котел можно топить хоть торфом, хоть соломой, а “ЭРА” и вовсе будет рада и пластику, и старым калошам.
По подсчетам изобретателя, расходы на перевод ДВС в режим паровой машины окупятся за полгода. Вам обеспечены лет на 20—25 источник тока мощностью 1—25 кВт и чистота вокруг. Свалки могут превратиться в стратегический энергоресурс.
Уже есть фирма, конструирующая на заказ такие “паровозы”, но это капля в море. Н.Егин полагает, что от деклараций и бесконечных экспериментов с нетрадиционными источниками энергии в России надо переходить к экспертной технической и экономической их оценке в целых отраслях, например ЖКХ, и приступать к планомерному внедрению.
Е.Рогов
Китайцы и тут нас обошли.
извиняюсь. Попытался вставить фото не получилось. Попробую еще раз.
Вот это ЧУДО. прям в музей или туристов по Москве катать- озолотишься.
консультации по тепличным технологиям. Есть вопрос? — Задай его здесь!
Паровой двигатель из двс ваз
Современный мир заставляет многих изобретателей снова возвращаться к идее применения паровой установки в средствах, предназначенных для перемещения. В машинах есть возможность использовать несколько вариантов силовых агрегатов, работающих на пару.
Содержание:
Поршневой мотор
Современные паровые двигатели можно распределить на несколько групп:
Конструктивно установка включает в себя:
Принцип работы
Процесс происходит следующим образом. После включения зажигания начинает поступать питание от аккумуляторной электробатареи трех двигателей. От первого в работу приводится воздуходувка, прокачивающая воздушные массы по радиатору и передающая их по воздушным каналам в смесительное устройство с горелкой.
Одновременно с этим очередной электромотор активирует насос перекачки топлива, подающий конденсатные массы из бачка по змеевидному устройству подогревательного элемента в корпусную часть отделителя воды и подогреватель, находящийся в экономайзере, в паровой генератор.
До начала запуска пару нет возможности пройти к цилиндрам, так как путь ему перекрывают клапан дросселя или золотник, которые приводятся в управление кулисной механикой. Поворачивая ручки в сторону, необходимую для передвижения, и приоткрывая клапан, механик приводит в работу паровой механизм.
Отработанные пары по единому коллектору поступают на распределительный кран, в котором разделяются на пару неодинаковых долей. Меньшая по объему часть попадает в сопло смесительной горелки, перемешивается с воздушной массой, воспламеняется от свечи. Появившееся пламя начинает подогревать контейнер. После этого продукт сгорания переходит в водоотделитель, происходит конденсирование влаги, стекающей в специальный бак для воды. Оставшийся газ уходит наружу.
Вторая часть пара, большая по объему, по крану-распределителю переходит в турбину, приводящую во вращение роторное устройство электрического генератора. Далее пары проходят в сопловую часть конденсатора, потом – в радиатор, в котором охлаждаются, передавая тепловую энергию воздуху, и попадают в водяную емкость.
Правила эксплуатации автомобилей с паровым двигателем
Паровая установка может напрямую соединяться с приводным устройством трансмиссии машины, и с началом ее работы машина приходит в движение. Но с целью повышения кпд специалисты рекомендуют использовать механику сцепления. Это удобно при буксировочных работах и разных проверочных действиях.
В процессе движения механик, учитывая обстановку, может изменить скорость, манипулируя мощностью парового поршня. Это можно выполнить, дросселируя пар клапаном, или изменять подачу пара кулисным устройством. На практике лучше использовать первый вариант, так как действия напоминают работу педалью газа, но более экономичный способ – задействование кулисного механизма.
Для непродолжительных остановок водитель притормаживает и кулисой останавливает работу агрегата. Для длительной стоянки отключается электрическая схема, обесточивающая воздуходувку и топливный насос.
Преимущества машины
Аппарат отличается способностью работать практически без ограничений, возможны перегрузки, имеется большой диапазон регулировки мощностных показателей. Следует добавить, что во время любой остановки паровой двигатель перестает работать, чего нельзя сказать про мотор.
В конструкции нет необходимости устанавливать коробку переключения скоростей, страртерное устройство, фильтр для очистки воздуха, карбюратор, турбонаддув. Кроме этого, система зажигания в упрощенном варианте, свеча только одна.
В завершении можно добавить, что производство таких машин и их эксплуатация будут обходиться дешевле, чем автомобили с двигателем внутреннего сгорания, так как топливо будет недорогим, материалы, применяемые в производстве – самыми дешевыми.
Мастер сделал сам паровой двигатель
Вы видели когда-нибудь, как работает паровой двигатель не на видео? В наше время найти такую функционирующую модель не просто. Нефть и газ давно вытеснили пар, заняв господствующее положение в мире технических установок, приводящих механизмы в движение. Однако, ремесло это не утрачено, можно найти образцы успешно работающих двигателей, установленных умельцами на автомобилях и мотоциклах. Самодельные образцы чаще напоминают музейные экспонаты, чем изящные лаконичные аппараты, пригодные для эксплуатации, но они работают! И люди успешно ездят на паровых авто и приводят в движение разные агрегаты.
В этом выпуске канала “Techno Rebel” вы увидите паровую двухцилиндровую машину. Всё началось с двух поршней и такого же количества цилиндров.
Убрав все лишнее, мастер увеличил ход поршня и рабочий объем. Что привело к увеличению крутящего момента. Самой сложной деталью проекта является коленвал. Состоит из трубы, которую расточили под 3 подшипника. 15 и 25 трубы. Труба спилена после сварки. Подготовил трубу под поршень. После обработки он станет цилиндром или золотником.
От кромки оставляется на трубе 1 сантиметр, чтобы, когда будет варится крышка, металл может повезти в сторону. Поршень может застрять. На видео показана доработка распределительного цилиндров. Одно из отверстий заглушена, сужено до трубки двадцатки. Здесь будет поступать пар. Отверстие для выхода пара.
Как работает аппарат. В отверстий подается пар. Он распределяется по трубе, попадает в 2 цилиндра. Когда поршень опускается вниз, пар проходит и под давлением опускается. Поршень поднимается. Перекрывает проход. Пар стравливается через отверстия.
Далее с 5 минуты
Как сделать рабочую модель парового двигателя на дому
Если вы были заинтересованы в модельных паровых двигателях, вы, возможно, уже проверили их в Интернете, шокирующим будет то, что они очень дорогие. Если вы не ожидаете ценовой диапазон, то вы можете попытаться найти другие варианты, где у вас может быть собственная модель парового двигателя. Это не означает, что вам нужно только купить их, так как вы можете сделать их самостоятельно. Вы можете посмотреть процессы создания собственной модели парового двигателя на сайте WoodiesTrainShop.com. Там нет ничего, что вы не можете сделать и выяснить, не имея немного собственных исследований.
Как создать свой собственный паровой двигатель?
Это звучит удивительно, но на самом деле вы можете создать модельный паровой двигатель с нуля. Вы можете начать с создания очень простого трактора, тянущего двигатель. Он может легко перевозить взрослого человека, и вам понадобится около ста часов, чтобы закончить строительство. Самое замечательное в том, что это не так дорого, и процесс его создания очень прост, и все, что вам нужно сделать, это сверлить и работать на токарно-фрезерном станки весь день. Вы всегда можете проверить свои возможности на сайте WoodiesTrainShop.com, на котором найдете более подробную информацию о том, как вы можете начать делать свою собственную модель парового двигателя.
Обода задних колес самодельные, модель парового двигателя сделана из газовых баллонов, и вы можете купить готовые передачи, а также приводные цепи на рынке. Простота модели «сделай сам» с паровым двигателем – это то, что делает его привлекательным для всех, поскольку он предлагает вам очень простые инструкции и быструю сборку. Вам даже не нужно изучать что-либо техническое, чтобы иметь возможность делать все самостоятельно. Простых рисунков и рисунков достаточно, чтобы помочь вам с рабочей нагрузкой от начала до конца.
Паровой двигатель начал свою экспансию еще в начале 19-го века. И уже в то время строились не только большие агрегаты для промышленных целей, но также и декоративные. В большинстве своем их покупателями были богатые вельможи, которые хотели позабавить себя и своих детишек. После того как паровые агрегаты плотно вошли в жизнь социума, декоративные двигатели начали применяться в университетах и школах в качестве образовательных образцов.
Паровые двигатели современности
В начале 20-го века актуальность паровых машин начала падать. Одной из немногих компаний, которые продолжили выпуск декоративных мини-двигателей, стала британская фирма Mamod, которая позволяет приобрести образец подобной техники даже сегодня. Но стоимость таких паровых двигателей легко переваливает за две сотни фунтов стерлингов, что не так и мало для безделушки на пару вечеров. Тем более для тех, кто любит собирать всяческие механизмы самостоятельно, гораздо интереснее создать простой паровой двигатель своими руками.
Устройство двигателя очень простое. Огонь нагревает котел с водой. Под действием температуры вода превращается в пар, который толкает поршень. Пока в емкости есть вода, соединенный с поршнем маховик будет вращаться. Это стандартная схема строения парового двигателя. Но можно собрать модель и совершенно другой комплектации.
Что же, перейдем от теоретической части к более увлекательным вещам. Если вам интересно делать что-то своими руками, и вас удивляют столь экзотичные машины, то эта статья именно для вас, в ней мы с радостью расскажем о различных способах того, как собрать двигатель своими руками паровой. При этом сам процесс создания механизма дарит радость не меньшую, чем его запуск.
Метод 1: мини-паровой двигатель своими руками
Итак, начнем. Соберем самый простой паровой двигатель своими руками. Чертежи, сложные инструменты и особые знания при этом не нужны.
Для начала берем алюминиевую банку из-под любого напитка. Отрезаем от нее нижнюю треть. Так как в результате получим острые края, то их необходимо загнуть внутрь плоскогубцами. Делаем это осторожно, чтобы не порезаться. Так как большинство алюминиевых банок имеют вогнутое дно, то необходимо его выровнять. Достаточно плотно прижать его пальцем к какой-нибудь твердой поверхности.
На расстоянии 1,5 см от верхнего края полученного «стакана» необходимо сделать два отверстия друг напротив друга. Желательно для этого использовать дырокол, так как необходимо, чтобы они получились в диаметре не менее 3 мм. На дно банки кладем декоративную свечку. Теперь берем обычную столовую фольгу, мнем ее, после чего оборачиваем со всех сторон нашу мини-горелку.
Мини-сопла
Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.
Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.
Запуск двигателя
Банку размещают в емкости с водой. При этом необходимо, чтобы края трубки находились под ее поверхностью. Если сопла недостаточно длинные, то можно добавить на дно банки небольшой грузик. Но будьте осторожны — не потопите весь двигатель.
Теперь необходимо заполнить трубку водой. Для этого можно опустить один край в воду, а вторым втягивать воздух как через трубочку. Опускаем банку на воду. Поджигаем фитиль свечки. Через некоторое время вода в спирали превратится в пар, который под давлением будет вылетать из противоположных концов сопел. Банка начнет вращаться в емкости достаточно быстро. Вот такой у нас получился двигатель своими руками паровой. Как видите, все просто.
Модель парового двигателя для взрослых
Теперь усложним задачу. Соберем более серьезный двигатель своими руками паровой. Для начала необходимо взять банку из-под краски. При этом следует убедиться, что она абсолютно чистая. На стенке на 2-3 см от дна вырезаем прямоугольник с размерами 15 х 5 см. Длинная сторона размещается параллельно дну банки. Из металлической сетки вырезаем кусок площадью 12 х 24 см. С обоих концов длинной стороны отмеряем 6 см. Отгибаем эти участки под углом 90 градусов. У нас получается маленький «столик-платформа» площадью 12 х 12 см с ногами по 6 см. Устанавливаем полученную конструкцию на дно банки.
По периметру крышки необходимо сделать несколько отверстий и разместить их в форме полукруга вдоль одной половины крышки. Желательно, чтобы отверстия имели диаметр около 1 см. Это необходимо для того, чтобы обеспечить надлежащую вентиляцию внутреннего пространства. Паровой двигатель не сможет хорошо работать, если к источнику огня не будет попадать достаточное количество воздуха.
Основной элемент
Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром ¼-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.
Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.
Емкость для воды
Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.
Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее — более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.
Результат
В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.
Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента — огонь и вода.
Кроме такой конструкции, можно собрать паровой двигатель Стирлинга своими руками, но это материал для совершенно отдельной статьи.
Всем привет! С вами снова kompik92!
И сегодня и мы будем делать паровой двигатель!
Думаю каждому было когда-то хотелось сделать паровой двигатель!
Ну так давайте сделаем ваши мечты реальностью!
У меня есть два варианта его сделать: лёгкая и сложная. Оба варианта очень классные и интересные и если вы думаете что тут будет только один вариант, то вы правы. Второй вариант я выложу немного позже!
И давайте сразу к инструкции!
А вот и инструкция для варианта №1 :
Давайте приступим!
1. Вам нужно отрезать дно банки с высотой в 6.35 см. Для лучшего среза, сначала нарисуйте карандашом линию а потом ровно по ней срежьте дно банки. Таким образом мы получаем корпус нашего двигателя.
6. Создайте змеевик. Сделайте три четыре мотка в середине трубки при помощи карандаша. С каждой стороны должно быть не меньше 5 см. Мы сделали змеевик. Не знаете что это?
Вот вам цитата из википедии.
Думаю стало легче, но если всё равно не стало легче то я объясню сам. Змеевик это трубка в которой протекает жидкость чтобы её нагревали или охлаждали.
Вот и всё! Через некоторое время я выложу продолжение!
С вами был kompik92!
Даже если за плечами спортсмена уже есть богатый опыт создания судомоделей-копий, все равно при проектировании нового микросудна он неизбежно сталкивается с проблемой — какой двигатель ставить на будущую копию! Калильный или компрессионный — возникнут проблемы с топливом, шумоглушением и вибрациями. Электрический! Но и он не без недостатков, особенно с учетом большой массы электроаккумуляторов.
А почему не пойти по наиболее колийному пути и на копиях, например, пароходов не использовать настоящий миниатюрный паровой двигатель! Попытка реализации этой поначалу кажущейся трудноосуществимой идеи принесла очень интересные результаты.
Прежде всего — непосредственно о двигателе (в паровую установку входит еще немало крупных узлов). Проще его сделать на базе любого из моделистских ДВС достаточного рабочего объема. Кстати, хорошо подойдет для этих целей такой мотор, как «Комета» МД-5, давно зарекомендовавший себя в штатном калильном исполнении как совершенно неработоспособный. Для парового варианта лучше всего изготовить новую гильзу цилиндра и выполнить в ней лишь выпускные окна для выхода пара. Перепускные (продувочные) окна не нужны — при их отсутствии картер мотора окажется закрытым, что позволит сохранять во время работы установки в объеме картера достаточное количество масла.
Следующий этап работы над паросиловой установкой — изготовление двух баков: для воды и бензина или другого жидкого топлива. Водяной бак выполняется пайкой из толстой листовой латуни или нержавейки толщиной не менее 0,8—1 мм (в крайнем случае подойдет толстое кровельное железо). Выбор материала обусловлен тем, что водяной бак будет при функционировании установки находиться под тем же давлением, что и вся паровая система. Топливный бак может быть не столь прочным и меньшим по объему. Его размеры подбираются практическим путем.
Один из важнейших узлов установки — паровой котел. Его конструкция ясна из рисунков, а материалы и технологии изготовления элементов котла каждый может выбрать, исходя из собственных пожеланий и возможностей.
Паровой котел:
1 — трубка подвода топлива (медь, Ø 3 мм), 2 — теплообменник-испаритель, 3 — трубка питания форсунки (медь, Ø 3 мм), 4 — трубка отбора пара, 5 — испаритель воды (трубка Ø 3—4 мм), 6 — жалюзи подвода воздуха к пламени, 7 — форсунка, 8 — узел крепления форсунки, 9 — нижняя камера, 10 — трубка подвода воды к испарителю, 11 —корпус-труба.
Теплообменник — испаритель топлива может быть изготовлен из медной коробки от старого барометра или в виде мотка тонкой медной трубки. Топливораспыляющая форсунка переделывается из туалетного пульверизатора.
Паровой клапан, монтируемый в головке двигателя:
1 — трубка подвода пара от котла к двигателю, 2 — латунный корпус клапана, 3 — пружина, 4 — шарик-клапан. Для работы клапана в днище поршня двигателя нужно по центру смонтировать шток-толкатель, который при подходе поршня к верхней мертвой точке должен отжимать шарик-клапан вверх, впуская таким образом очередную порцию пара под давлением.
Доработка штатной головки цилиндра двигателя.
Водяной бак:
1 — корпус (кровельное железо или листовая латунь), 2 — заливная горловина (закрывается герметично), 3— вентиль (ниппель от велосипеда или мотоцикла), 4 — расходный кран-вентиль.
Подготовка к испытаниям паровой машины несложна. В картер переделанного ДВС заливают машинное масло; в штатный диффузор карбюратора вставляют заглушку (масло необходимо заменять примерно через 50 часов работы машины). Баки заполняются соответственно водой (лучше дистиллированной, что исключит образование накипи в паровой системе) и бензином любой марки. Оба бака герметично закрывают. Затем в нижнюю часть парового котла укладывают подожженную таблетку сухого спирта, а через впаянные в баки ниппеля накачивают в них воздух, создавая избыточное давление. Теперь можно открывать расходные краны-вентили. Через некоторое время, когда разогреется теплообменник испарения топлива, пламевая система котла перейдет на автоматический режим, постоянно подавая под давлением бензин к соплу форсунки. Чтобы заставить работать двигатель, достаточно пару раз провернуть его коленвал. Обороты мотора регулируют подачей воды и высотой пламени.
Новая паросиловая установка уже прошла успешные испытания на копии парохода «Володарский» (см. «М-К» № 11 за 1990 год). Модель прекрасно смотрится на ходу, неизменно привлекая внимание и зрителей, и спортсменов. Но главное — копия парохода теперь без всяких смысловых натяжек является также пароходом!
О. ХЛОПИН, г. Вологда
Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.
Паровые автомобили — что и как это было
Статья о паровых автомобилях: история создания, интересные модели и их описание, характеристики, фото. В конце статьи — видео про парковой трайк. Статья о паровых автомобилях: история создания, интересные модели и их описание, характеристики, фото. В конце статьи — видео про парковой трайк.
Эра бензиновых автомобилей, таких привычных и надежных, еще длится. Но автоконцерны с мировыми именами уже начинают производить экономичные и экологичные электромобили, которые рано или поздно вытеснят с рынка машины с ДВС.
Однако человечество за свою историю знало и иные источники энергии — например, паровые двигатели, которые применялись в некоторых типах машин.
Пар как двигатель прогресса
На фото: паровая машина Кюньо
Вехи создания паровых машин:
-
Первый паровой двигатель в истории был придуман и реализован инженером Героном Александрийским, жившим две тысячи лет назад в Греции. Он и сам не понял, зачем изобрел игрушку-шар, вращавшуюся вокруг своей оси, приводимую в движение поднимающимся снизу паром. Технология, не найдя применения, канула в небытие на полторы тысячи лет.
Перемещаться паровая телега могла лишь километр, после чего требовалась «дозаправка» кипящей водой. Зато перевозить на этот километр она могла до двух тонн груза.
Идея командованию понравилась, конструктору дали «добро» и 20 000 франков на доработку идеи. В итоге телега научилась двигаться со скоростью 7 км/ч довольно долго за счет установленной топки под котлом. Этой скорости хватило, чтобы паровая телега совершила первое ДТП, протаранив стену дома из-за поймавшего «клина» колеса. Французская «бабушка» парового автомобиля нынче хранится в музее.
Первые паромобили
В самом начале 1906 года водитель Фред Мариотт, управляя паромобилем, построенном на производстве, принадлежащем «Братьям Стенлей» и пророчески названом «Ракета», впервые в истории сумел разогнаться до 205 км/ч.
Это звучало триумфально! Ведь машина, движимая паром, обгоняла все транспортные средства, включая самолеты. Зафиксировав очередной скоростной рекорд в 240 км/ч гонщик разбился насмерть.
Уже начало ХХ века ознаменовано было тем, что на дорогах уверенно ездили паровые автомобили, преимущественно грузовые. Они от первых автомобилей на бензине отличались рядом факторов:
Паровые машины отличались малым скоростным режимом (не более 50 км/ч) — им надо было постоянно иметь в запасе большой объем воды, а отработанный пар постоянно уходил в атмосферу. Паровые автомобили широко использовались в Европе до начала 1940-х годов, а в Бразилии их выпуск велся серийно даже спустя десятилетие.
У паровичков были существенные минусы:
-
твердое топливо на выходе превращалось в большую кучу золы;
«Спиртомобиль»
Инженерам казалось, что двигатель внутреннего сгорания непригоден для транспорта. Он глохнет, если его притормозить, и его нельзя запустить после размыкания трансмиссии.
Двигатель внутреннего сгорания также не способен был развить тягу в различном скоростном диапазоне, он не запускался без «костыля» в виде трансмиссии.
Машина, запускаемая паром, казалось, сама мимикрирует под любое изменение дорожной ситуации. Растущее сопротивление приводило к тому, что двигатель замедлял вращение, увеличивая параллельно крутящий момент. Когда сопротивление уменьшалось, вращение – увеличивалось. Поэтому создатели паромобилей всячески боролись за создание компактного парогенератора, способного двигать машину без участия дополнительных приспособлений в виде сцепления и коробки передач.
Люди выяснили, что сгорающее топливо в цилиндре ДВС выбрасывает в атмосферу много токсичного вещества. Небольшой автомобиль с бензиновым двигателем способен в течение часа работы выработать столько вредных субстанций, что если бы небольшое пространство вокруг него было бы замкнуто, это привело бы к смерти находящихся рядом людей.
Парогенераторная горелка менее токсична на выходе — топливо сгорает при неизменяемых показателях, способствуя полноценному завершению реакций.
Важный фактор экономичности машины заключается в количестве потребляемого топлива. Так, американская «звезда» на паровой тяге «Добль-Беслер», собранная в середине 1920-х годов, имела массу в 2 с хвостиком тонны. При этом расход топлива составлял 18 литров на сотню километров. Для своего времени это был очень хороший показатель — более того, он оставался эталонным почти сорок лет.
Парогенераторная горелка перерабатывала жидкость в любом виде. Паромобиль продолжал движение на керосине и спирте, работал на бензине, мазуте, даже на растительном масле. И это было вовсе не попыткой удешевить процесс заправки — просто машины типа «Добль» были всеядны, но доступны лишь миллионерам.
От самогонного аппарата – к четырехколесному агрегату
На фото: братья Добль
Парогенератор являлся самым главным элементом машины на пару. Разработку удалось воплотить детройтским инженерам, братьями Добль. Они последовательно соединили десять плоских змеевиков, помещенных в корпус из стали, охлаждаемый водой.
Прохладная жидкость накачивалась в расположенные вокруг выдерживающего высокие температуры корпуса охлаждающие трубы, где происходил ее подогрев. Это сводило к минимуму теплопотерю. После чего жидкость наполняла змеевики, чтобы, закипев, стать паром с температурой 4,5 тысячи градусов по Цельсию и давлением в 120 атмосфер.
Братья Добль стремились к увеличению температуры, а также давления, что в совокупности повышало КПД. Инженерам удалось сделать парогенератор довольно легким и незатратным.
Сдвоенные цилиндры перерабатывали пар. Сначала он нагнетался в верхушку меньшего диаметра, где, расширившись, вырабатывал энергию. Затем он «переходил» в больший цилиндр, в его нижнюю часть, осуществляя дополнительную работу.
Два этапа расширения оказывались крайне полезными, когда машина ездила по улицам. Во время начала движения и при разгоне поступали значительные объемы пара, но, когда необходимости в максимальной энергоотдаче не было, они расширялись единожды.
Отработавшие пары передавали охлажденной жидкости, стремящейся в парогенератор, тепло. В жидкое состояние пар возвращался лишь в конденсаторе. Влага в парогенератор поступала порционно, ровно столько, чтобы паровая машина могла сделать один-два движения поршня. Поэтому по факту парогенератор вмещал в себя небольшое количество воды, что делало его безопасным для взрыва.
Если трубка рвалась, пар попадал в топку, отключая горелку. И даже такой случай произошел всего единожды, когда машина вдруг перестала заводиться после двух сотен километров пробега. Ремонт и замена вышедшего из строя змеевика заняли ровно один час.
«Добль» миллионеров
На фото: паромобиль
Незадолго до развязывания Германией войны в Европе на нынешнем ЗИЛе, носившем тогда название Московского автозавода имени Сталина, решили выпускать эксклюзивную модель автомобиля.
Кузов красавца украшало красное дерево. Он стоял на хромоникелевых стальных шасси, произведенных фирмой «Паккард». За образец советские конструкторы взяли паромобиль «Добль», собранный в 1924 году американской компанией «Беслер».
Управлять скоростью можно было при помощи педали, подающей пар. Время от времени требовалось лишь сменять фазу прекращения впуска в цилиндр пара. После включения зажигания автомобилю требовалось 45 секунд, чтобы начать движение. Еще пара минут, и машину можно было ускорить до 150 км/ч.
Паромобиль двигался ровно и тихо. Он пришелся ко двору советской элиты, его испытания продолжились уже после заключения мира с Германией. Один из принимающих участие в разработке советской версии «Добля», А.Н.Малинин, отвечал за испытания образца.
Для определенных тестов используются в автопромышленности стенды для испытаний с беговыми барабанами. Автомобиль загоняется на стенд так, чтобы ведущие колеса оказывались строго на барабанах. В итоге они крутятся, заставляя вертеться колеса и имитируя езду по дороге. При этом машина стоит с работающим двигателем.
Когда инженер-испытатель Малинин и огромный авторитет в теоретической автомобилестроительной области профессор Чудаков сели в машину, последний нажал кнопки и затих. Минут через пять Малинин не выдержал: «Не пора ли заводиться?». На что профессор ответил: «Мы уже давно едем, на спидометре 20 километров». Скорость была вполне приличная, но, чтобы ухо уловило хоть какой-то звук работы парогенератора, надо было вплотную прижиматься в выхлопной трубе.
Семидесяти литров воды с избытком хватало на полтысячи километров пробега, а проблемы, требующие выпуска пара, случались крайне редко. Поэтому в автомобиле, в котором все детали были четко и точно подогнаны друг к другу, ничего не шумело.
Участь паровых машин
Если паромобили были столь удобны и хороши, почему же именно автомобили с ДВС сумели занять нишу в автомобильной среде?
Дело в том, что двигатель на пару имел весьма сложную автоматику и множество всяческих дополняющих друг друга агрегатов. При этом его изготовление выходило дороже, а КПД он выдавал меньший.
Еще одним минусом стал его большой размер, в частности – бак с запасом воды. Про экологичность тогда еще никто не задумывался, в итоге паровая машина оказалась постепенно вытеснена с рынка более дешевыми автомобилями с ДВС.
День сегодняшний
На фото: модель Inspiration
Вытесненные с рынка, паромобили нет-нет да и будоражат умы инженеров. В 2009 году на треке болид на пару Inspiration, хищный и обтекаемый, сумел установить новый рекорд машин на паровой тяге – 225 км/ч.
Мощность болида составляла 360 л.с., а движение запускалось двумя турбинами с давлением в 40 бар, которые нагнетали 12 современных бойлеров.
Остается открытым вопрос – на чем бы мы колесили сегодня, озаботься человечество проблемой сохранения окружающей среды на полсотни лет раньше?
Видео про парковой трайк:
Источник https://izobreteniya.net/sovremennyiy-parovoy-dvigatel/
Источник https://pocomp.ru/kak-peredelat-dvigatel-vnutrennego-sgoraniya-v-parovoy/
Источник https://fastmb.ru/autonews/autonews_mir/3722-parovye-avtomobili-chto-i-kak-eto-bylo.html
Источник