Двигатель трансмиссия что это
Что такое трансмиссия и как она работает — фото видео.
Когда каждый человек еще в детстве начинает интересоваться автомобилями, он изучает не только марки и моделей машин, но и устройство автомобиля. Одним из главных агрегатов автомобиля является трансмиссия, которая состоит из множества более мелких узлов и агрегатов. В данной статье мы расскажем всем интересующимся молодым автомобилистам, что такое трансмиссия в автомобиле.
Определение понятия «трансмиссия»
Согласно научным изданиям машиностроения, трансмиссия – это совокупность механизмов и сборочных единиц, которые соединяют двигатель с ведущими колесами, в данном случае, автомобильного транспорта, а также совокупность системы, которая обеспечивает работу трансмиссии.
Трансмиссия является совокупностью агрегатов и узлов, которые передают крутящий момент от мотора к ведущим колесам, при этом могут изменяться тяговые усилия, скорость и направление движения. Автомобильная трансмиссия включает в себя механизмы, которые в науке относят к составу силового агрегата – это коробка передач и сцепление.
Назначение и схемы трансмиссий
Назначение. Трансмиссия автомобиля служит для передачи крутящего момента от двигателя к ведущим колесам. При этом передаваемый крутящий момент изменяется по величине и распределяется в определенном соотношении между ведущими колесами.
Крутящий момент на ведущих колесах автомобиля зависит от передаточного числа трансмиссии, которое равно отношению угловой скорости коленчатого вала двигателя к угловой скорости ведущих колес. Передаточное число трансмиссии выбирается в зависимости от назначения автомобиля, параметров его двигателя и требуемых динамических качеств.
В трансмиссию входят:
- сцепление,
- коробка передач,
- карданная передача,
- главная передача, устанавливаямая в картере ведущего моста,
- дифференциал
- полуоси.
Сцепление позволяет на непродолжительное время отсоединить трансмиссию от двигателя и обеспечивает плавное включение трансмиссии при трогании автомобиля с места или при переключении передач.
Коробка передач служит для получения различных тяговых усилий на ведущих колесах путем изменения крутящего момента, передаваемого от двигателя к карданному валу, а также для изменения направления вращения ведущих колес при движении задним ходом и для отключения трансмиссии от двигателя на длительное время.
Карданная передача позволяет передавать крутящий момент от выходного вала коробки передач к заднему мосту при изменяющемся (при движении автомобиля) угле между осями вала коробки передач и ведущего вала главной передачи.
Главная передача служит для того, чтобы передать крутящий момент под углом 90 градусов от карданного вала к полуосям, а также для уменьшения числа оборотов ведущих колес по отношению к числу оборотов карданного вала. Уменьшение частоты вращения механизмов трансмиссии после главной передачи приводит к увеличению крутящего момента и, соответственно, увеличивает силу тяги на колесах.
Дифференциал обеспечивает возможность вращения правого и левого ведущих колес с разными скоростями на поворотах и неровной дороге. Две полуоси, связанные с дифференциалом через полуосевые шестерни, передают крутящий момент от дифференциала к правому и левому ведущим колесам. Дифференциалы, устанавливаемые между приводами колес ведущей оси, называют межколесными, между разными осями — межосевыми (в полноприводных трансмиссиях).
Трансмиссии по способу передачи крутящего момента разделяют на механические, гидравлические, электрические и комбинированные (гидромеханические, электромеханические). На отечественных автомобилях наиболее распространены механические трансмиссии, в которых передаточные механизмы состоят из жестких недеформируемых элементов (металлических валов и шестерен). На автобусах Ликинского и Львовского заводов, а также на большегрузных автомобилях БелАЗ применяют гидромеханические трансмиссии с автоматизированным переключением передач. Часть большегрузных автомобилей БелАЗ имеют электромеханическую трансмиссию с моторколесами.
Схема трансмиссии автомобиля. Она определяется его общей компоновкой: размещением двигателя, числом и расположением ведущих мостов, видом трансмиссии.
Схемы трансмиссий:
а — автомобиля 4X2, б — переднеприводного автомобиля 4X2, в — автомобиля 4X4, г — автомобиля 6X4
Автомобили с механической трансмиссией и колесной формулой 4X2 имеют чаще всего переднее расположение двигателя, задние ведущие колеса и центральное размещение агрегатов трансмиссии (автомобили ЗИЛ-130, МАЗ-5335, ГАЗ-24 и др.). Здесь двигатель 1, сцепление 2 и коробка передач 3 (рис. а) объединены в один блок и образуют силовой агрегат. Крутящий момент от коробки передач 3 передается карданной передачей 4 на ведущий задний мост 5.
Существенные отличия имеет трансмиссия переднеприводного автомобиля ВАЗ-2108 с колесной формулой 4X2 (рис. 6). Особенностью этой схемы является выполнение ведущим переднего моста с управляемыми колесами. Это потребовало объединения в единый силовой агрегат двигателя 1, сцепления 2, коробки передач 3, механизмов ведущего моста 5 (главную передачу и дифференциал), карданных шарниров 6 равных угловых скоростей, соединенных с передними управляемыми колесами.
На (рис. в) представлена схема трансмиссии автомобиля с передним и задним ведущими мостами (автомобиль УАЗ-469). Отличительной особенностью этой схемы является применение в трансмиссии раздаточной коробки 7, которая через промежуточные 9 карданные валы передает крутящий момент переднему 8 и заднему 5 ведущим мостам. В раздаточной коробке имеется устройство для включения и выключения переднего моста и дополнительная понижающая передача, позволяющая значительно увеличить крутящий момент на колесах автомобиля в необходимых случаях.
Схема механической трансмиссии трехосных грузовых автомобилей КамАЗ представлена на (рис. г). На этих автомобилях средний 10 и задний 5 мосты являются ведущими. Крутящий момент к ним передается одним карданным валом 4, а в главной передаче среднего моста предусмотрен межосевой дифференциал и проходной вал, передающий крутящий момент на карданный вал 11 привода заднего моста. В других схемах трансмиссий трехосных автомобилей передача крутящего момента к ведущим мостам может производиться раздельно карданными валами от раздаточной коробки (автомобиль Урал-375).
Схемы гидромеханических трансмиссий предусматривают объединение в едином блоке двигателя и гидромеханической коробки передач, крутящий момент от которой передается ведущим колесам через карданный вал и механизмы заднего моста как в обычной механической трансмиссии.
На автомобилях (БелАЗ) с электромеханической трансмиссией дизельный двигатель приводит во вращение генератор постоянного тока, энергия от которого передается по проводам в электродвигатели колес. Колесный электродвигатель монтируют в ободе колеса совместно с понижающим механическим редуктором. Такая конструкция называется электромотор-колесом.
Классификация трансмиссий
Рассмотрим классификацию трансмиссий.
По методам передачи и преобразованию момента трансмиссии подразделяются на электромеханические, механические и гидромеханические.
Механическая трансмиссия
Трансмиссии механического типа (обычные и планетарные) в КПП содержат только фрикционные и шестеренчатые устройства. Преимущества их заключаются в коэффициенте полезного действия, небольшой массе и компактности, простоте в эксплуатации и надежности в работе. Недостаток трансмиссии такого типа – ступенчатость изменения передаточных чисел, понижающая использование мощности силового агрегата. Длительное время на переключение рычагом передач усложняет управление автомобилем. Именно поэтому спортивные автомобили, оснащенные механической трансмиссией, снабжают электронными переключателями передач (кнопками на рулевом колесе, подрулевыми лепестками) и КПП со сверхбыстрыми синхронизирующими сервомеханизмами.
Использование трансмиссий механического типа свойственно советскому тракторостроению.
Гидромеханическая трансмиссия
Трансмиссии гидромеханического типа оснащены гидромеханической КПП, которая состоит из механического редуктора и гидродинамического преобразователя момента. Преимущества таких трансмиссий заключаются в возможности автоматизации смены передачи и облегчении управления, автоматическом изменении крутящего момента на основе внешних сопротивлений, фильтрации крутильных колебаний и уменьшении пиковых нагрузок, действующих на агрегаты трансмиссии, и увеличении за счет этого долговечности и надежности трансмиссии поршневого мотора.
Главный недостаток таких трансмиссий – достаточно низкий коэффициент полезного действия из-за недостаточно большого КПД гидротрансформатора. Если КПД гидропередачи не меньше 0.8, диапазон изменения крутящего момента не выше трех, что заставляет иметь механический редуктор на 3-5 передач, включая передачу заднего хода. Необходимо располагать специальной системой охлаждения, а также подпитки гидроагрегата, что увеличивает габаритные размеры моторно-трансмиссионного отдела. Без фрикционов или специальных автологов пуск двигателя с буксира и торможением двигателем не обеспечивается.
Трансмиссии гидромеханического типа активно применяются в западном тракторостроении – «Леопард-2» (ФРГ), М1 «Абрамс» (США). В трансмиссиях перечисленных танков в основном приводе, кроме гидромеханических передач, также применяются в дополнительном приводе гидростатические передачи для выполнения поворота. Гидромеханической передачей оснащен дизель-поезд под названием Д1 венгерского производства, работающий на постсоветском пространстве ЖД-техники.
Гидравлическая трансмиссия
Трансмиссией гидравлического типа в транспортной технике является такая трансмиссия, в которой переключения осуществляются не механическим методом, а гидравлическими аппаратами, т.к. чисто гидравлические трансмиссии встречаются довольно редко. Трансмиссия такого типа оборудована КПП с вторичным и первичным валами, а также, как и в обычной КПП, несколькими парами зубчатых колес, но включение необходимой пары в рабочий процесс выполняет не фрикционная или кулачковая муфта, а гидромуфта или же гидротрансформатор, который заполняется для включения передачи.
Главное достоинство трансмиссии такого типа – включение передач совершенно безударное и полное отсутствие механических муфт, стабильно работающих в процессе передачи больших крутящих моментов (к примеру, на тепловозах), главный минус – необходимость монтажа отдельной гидромуфты для каждой передачи. Из-за своих особенностей гидропередача применяется в основном на железнодорожной технике. Из отечественных разновидностей техники гидропередачей оснащены, к примеру, дизель-поезд ДР1, маневровые тепловозы ТГМ6 и ТГМ4.
Гидростатическая трансмиссия
В трансмиссии гидростатического типа для передачи мощности применяется аксиально-плунжерные гидромашины. Преимущества данной трансмиссии – небольшая масса и габариты машин, отсутствие механической связи между ведущим и ведомым звеньями трансмиссии, благодаря чему удается разносить их на достаточно значительные расстояния и придавать гораздо большее число степеней свободы. Главный минус гидрообъемной передачи – высокие требования к чистоте жидкости, участвующей в рабочем процессе, а также повышенное давление в гидролинии.
Гидростатическая передача применяется на дорожно-строительных машинах (в основном в катках, так как там необходимо обеспечивать достаточно большое передаточное число, а также очень часто приводить вальцы с торца, затруднено построение механической передачи), как вспомогательная – в авиационной технике, металлорежущих станках, тепловозах.
Электромеханическая трансмиссия
Трансмиссии электромеханического типа состоят из тягового электромотора (или нескольких), электрического генератора, электрической системы контроля, а также соединительных кабелей. Главным достоинством трансмиссий электромеханического типа является обеспечение более широкого диапазона автоматического изменения силы тяги и крутящего момента, а также отсутствие кинематической жесткой связи между механизмами электротрансмиссии, что дает возможность создать разные компоновочные схемы.
Главными минусами, которые препятствуют распространению трансмиссий электрического типа, являются большая масса, габариты и цена (особенно если применяются электромашины постоянного тока), меньший КПД (по сравнению с механической). Но с развитием электротехнической промышленности, широким распространением индукторного, вентильного, синхронного, асинхронного и других разновидностей электропривода открывается все больше новых возможностей для электромеханических трансмиссий.
Данные трансмиссии широко используются в тепловозах, тракторах, карьерных самосвалах, морских судах, военной технике, самоходных механизмах, немецких военных машинах «Мышонок» и «Фердинанд», а также автобусах, которые с трансмиссией этой разновидности более правильно называются теплоэлектробусы, к примеру, ЗИС-154.
На современных автомобилях, по большей части, используется трансмиссия механического типа. Трансмиссия механического типа, в которой изменение крутящего момента происходит в автоматическом режиме, называется автоматической трансмиссией.
На этом классификацию трансмиссий можно считать рассмотренной.
Трансмиссия автомобиля Принцип работы трансмиссии
Урок 6 — трансмиссия, виды коробок передач, механическая, автоматическая, типтроник, вариатор
Современные трансмиссии автомобилей: преимущества и недостатки
Сегодня на автомобили устанавливаются несколько типов трансмиссии, которые имеют свои определенные преимущества и недостатки. Как правильно выбрать машину начинающему автолюбителю.
При выборе автомобиля многие начинающие автовладельцы не уделяют должного внимания трансмиссии машины. Тогда как именно от этого будет напрямую зависеть удобство эксплуатации автотранспорта и отсутствие каких-либо проблем при использовании автомобиля. Какие существуют типы трансмиссий на автомобиле, и какой коробке передач следует отдавать предпочтение при выборе машины.
Типы трансмиссии
На сегодняшний день на автомобилях устанавливают три типа трансмиссии:
В недавнем прошлом наибольшей популярностью пользовались механические трансмиссии, которые позволяли лучше реализовывать динамический потенциал двигателя, помогали экономить топливо, отличались надежностью и беспроблемностью в эксплуатации. Сегодня же с совершенствованием технологии популярностью стали пользоваться автоматические коробки передач, которые существенно упрощают использование автомобиля в городе и в условиях скоростной трассы.
Вариатор, по сути, является одной из разновидностей автоматических коробок передач, где используется специальная конструкция с двумя подвижными шкивами. Благодаря использованию современных разработки и полностью автоматического управления, эта коробка передач позволяет без разрыва мощности увеличивать или уменьшать скорость. То есть, при разгоне скорость и мощность будут увеличиваться линейно, без провалов, как то бывает при переключении ступеней на автоматических и механических коробках передач.
Преимущества и недостатки механики
Многие опытные водители при выборе автомобиля отдают предпочтение машине с механической коробкой передач. Подобное можно объяснить не только привычкой, но и многочисленными преимуществами, которые характерны для трансмиссии этого типа. В первую очередь это простота и надежность конструкции. При правильном обращении такая коробка передач не потребует какого-либо специального ухода, у неё будут отсутствовать поломки механических узлов, что позволяет существенно сократить затраты автовладельца на эксплуатацию техники.
Конструктивно механическая коробка передач позволяет выполнить 5-6 и более ступеней, что улучшает реализацию динамических возможностей двигателя. Также за счёт использования наката и оптимального выбора водителем передач обеспечивается экономия топлива. В сравнении с коробкой автомат механика позволит на 15 — 20% сократить расход топлива.
Так же к преимуществам механических коробок передач можно отнести доступную стоимость этого узла. Многие водители при покупке новой машины попросту не хотят переплачивать 3-4 тысяч евро и более только за наличие коробки автомата. Также в последующем за счёт надежности и простоты эксплуатации такой трансмиссии существенно сокращаются расходы автовладельца.
Неудивительно, что даже сегодня с появлением полностью автоматизированных трансмиссий и вариаторов, механика не утратила своей популярности. Многие водители отдают предпочтение автомобилям с механической коробкой передач, что объясняется отличными эксплуатационными характеристиками трансмиссий этого типа.
АКПП: за и против
Первые автоматические коробки передач появились еще в середине прошлого века, однако должной популярности они не получили. Во многом такое ограничение распространения коробок автомат объяснялось тем, что такая трансмиссия имела две-три ступени, что существенно ограничивало возможности по реализации динамических показателей используемых силовых агрегатов. Однако в последующем конструкция АКПП существенно изменилась. Появилась возможность изготавливать пяти-шести и даже девятиступенчатые коробки передач, которые полностью управлялись автоматикой, позволяли обеспечить динамику автомобиля наравне с механикой, при этом существенно упрощали управление транспортным средством.
К преимуществам трансмиссии этого типа можно отнести удобство и простоту управления автомобилем. В особенности такое упрощение эксплуатации машин оценят начинающие водители. Им не придется постоянно выжимать сцепление, включать ту или иную передачу или трогаться с места, не боясь при этом откатиться назад. При эксплуатации автомобиля в городе с плотным графиком и постоянными пробками такая коробка-автомат избавляет нас от необходимости выполнять сотни и тысячи переключений скоростей ежедневно.
Современные АКПП благодаря наличию автоматики и большого числа ступеней позволяют улучшить реализацию динамических показателей двигателя, существенно сокращается расход топлива. Водитель может выбрать необходимый ему режим работы автоматической коробки, обеспечив как максимально возможную динамичность и быстрый разгон, так и комфорт использования этого узла.
К недостаткам автоматов относят лишь их сложность в ремонте и посредственную надежность. Приблизительно к 100 – 150 тысяч километров пробега у АКПП выходит из строя мехатроник, ремонт и замена которого обойдется автовладельцу в круглую сумму. Также потребуется на регулярной основе менять масло в трансмиссии, а это дорогостоящая сложная работа, провести самостоятельно которую не представляется возможным.
Коробки вариаторы
Вариатор — это модернизированная АКПП, которая имеет конструкцию с двумя подвижными шкивами. Отличие этой трансмиссии от классического автомата состоит в том, что у вариатора полностью отсутствуют толчки при переключении передач. По сути, изменения ступеней в такой трансмиссии не происходит. Мощность и скорость нарастает линейно, при этом обороты двигателя могут быть постоянны, а автоматика лишь корректирует положение шкива, изменяет тем самым передаточное число в коробке.
К преимуществам вариатора можно отнести максимальный комфорт и удобство использования такой трансмиссии. Однако следует отметить посредственную надёжность, сложность обслуживания коробки передач и её высокую стоимость. Ремонт и сервис трансмиссии этого типа следует выполнять исключительно в специализированных мастерских, мастера в которых будут иметь опыт работы с АКПП конкретного автопроизводителя.
Подведем итоги
Во многом от правильности выбора трансмиссии автомобиля будет зависеть удобство последующего использования транспорта. Сегодня наибольшей популярностью пользуются автоматические коробки передач, которые обеспечивают максимальное удобство использования машины, позволяют лучше реализовать динамический потенциал двигателя и экономят топливо.
Двигатель? Коробка? Куда бы их пристроить? Эволюция компоновки автомобиля
Компоновка — базис, фундамент при создании автомобиля. Если не считать предназначения будущей модели (в общем-то, и определяющего ее технический облик), то именно компоновочная схема становится тем, с чего начинается разработка автомобиля. Так было на заре появления колесного транспортного средства и продолжается до нынешнего времени. Хотя, повторимся, сейчас конструкторы во многом ограничены. Даже более века назад у них был бо́льший выбор.
Сзади? Спереди? По центру?
Задние ведущие колеса, привод к ним — обычно цепью и, что принципиально, экипажная часть, схожая с таковой у гужевого транспорта. Кажется, в конце 19 века и самом начале 20-го конструкторы были связаны по рукам и ногам. Все, что рождалось первопроходцами, должно было иметь определенный вид и компоновку.
Можно сказать, что Stahlradwagen стал одним из первых автомобилей, в котором ДВС расположили в пределах колесной базы. На этом инженерные изыскания, безусловно, не закончились. Уже тогда — на стыке веков — конструкторы искали оптимальную компоновку, которая бы позволила увеличить пассажировместимость и отвести место для багажа или груза.
После того как имитация каретных кузовов создателями автомобилей осталась в прошлом, двигатель с коробкой передач переехали вперед, в отдельный объем, называемый моторным отсеком. Окончательно? Ну что вы! При кажущейся оптимальности такого расположения всегда находились доводы в пользу того, чтобы отойти от ставшей уже привычной компоновки, названной классической.
Мост с коробкой вместе, двигатель иной раз врозь
Бытует мнение, что термин transaxle (от transmission и axle, трансмиссия и ведущий мост) обязательно должен ассоциироваться с миром спорта или как минимум с автомобилями gran turismo. То есть когда двигатель спереди, ведущие колеса задние, коробка передач для правильной развесовки отнесена назад и сблокирована с редуктором и дифференциалом. В общем-то, не зря бытует.
Говоря о GT и спорте, мы забываем о том, что коробка передач, объединенная с редуктором, использовалась на моделях сугубо гражданских, хотя и имевших иногда мощные моторы.
Схема transaxle требовала и требует использования сзади независимой (читай, многорычажной) подвески как минимум того же De Dion, где правое и левое колеса все-таки имеют некий свободный ход относительно друг друга. Иначе при использовании моста значительно вырастает неподрессоренная масса. Исключения существовали.
Это что касается transaxle с передним расположением двигателя. А ведь подобная схема впервые появилась на автомобильчиках, где мотор размещался сзади.
Если вспоминать первые автомобили с задним расположением двигателя, то на том же Rumpler, получается, силовой агрегат перевернули, расположив как при классической компоновке, только сзади. В 1938 году установку развернули обратно. Сделал это, как мы знаем, Фердинанд Порше — на VW Kafer/Beetle. После войны многие производители посчитали такую компоновку оптимальной.
Но что, кроме экономии «жилплощади», давал transaxle и вынесенный за пределы колесной базы двигатель? В небогатой Европе да на автомобилях компактных даже отсутствие карданного вала и тоннеля пола экономило массу и снижало себестоимость. Поэтому подобная компоновка использовалась не только в формате хэтчбека.
Преимущества расположенного продольно в заднем свесе двигателя вместе с transaxle скоро перестало превалировать над минусами — ограничением багажных возможностей, организацией только заднего привода. Сейчас такая схема осталась прерогативой Porsche. Тем не менее ограниченно и все-таки до сих пор используется компоновка, где агрегат расположен поперечно.
Даешь передний привод!
В общем-то, все, что надо было сделать инженерам, чтобы получить переднеприводный автомобиль, — это перенести расположенный сзади агрегат вперед. А также создать и выпустить недорогие и надежные ШРУСы. Проблема долгое время заключалась как раз в последних. При этом ошибочно иной раз считается, что по части взаимного расположения силового агрегата и ведущей оси передний привод не имеет такого количества вариантов, как задний.
Полноценный передний привод появился в 20-х годах. Естественно, ни о каком поперечном расположении двигателя речи не шло.
Забегая несколько вперед, скажем, что впоследствии переднеприводная компоновка с двигателем позади коробки закономерно не снискала у инженеров популярности. Можно вспомнить Citroen Traction Avant 7CV, Citroen DC — знаменитую «богиню» — и компактные Renault 4 с Renault 5.
При продольно расположенном силовом агрегате куда большее распространение получила компоновка, при которой двигатель был вынесен вперед, за пределы колесной базы. Как и при моторе сзади и заднем приводе, она позволила экономить пространство салона. С одним принципиальным отличием — никоим образом не сказывалась на грузовых возможностях.
Продольная компоновка в сочетании с передним приводом родила еще одну конструкцию — самую любопытную из существующих.
Вот это была безусловная экзотика, которая имела ограниченное использование (вспомним еще Toyota Tercel 80-х годов и Honda Ascot/Rafaga из 90-х). Между тем, еще до Второй мировой в Германии мотор под капотом умудрились разместить поперечно.
Встречалась и обратная компоновка, когда двигатель выносили перед осью колес.
Ну а нынешнюю компоновку автомобили с передним приводом начали получать с 70-х. Считается, что первопроходцем здесь был концерн VW с моделью Golf дебютного поколения.
С тех пор на большинстве «переднеприводников» такой «фэн-шуй» под капотом превратился в единственно верное решение. В какой-то момент стало совсем не важно, какой агрегат в моторном отсеке — рядная «четверка», V6, VR5 или VR6. Все они без проблем вместе с коробками размещались между лонжеронами. Разве что для этого, за редким исключением, пришлось отказаться от двухрычажной подвески, заменив ее McPherson. Наконец, уже в нашем веке инженеры научились засовывать поперечно рядные «пятерки» и «шестерки» (Volvo, Chevrolet Epica). Впрочем, сейчас при повальном переходе на 4-цилиндровые моторы подобные компоновочные «упражнения» неактуальны.
По центру или…
Наверное, лишне говорить о том, что все эти «пляски» двигателя вокруг передней или задней оси были связаны не только с необходимостью высвободить место под пассажиров и багаж — получить нужную нагрузку на ведущие колеса. В итоге — оптимальную развесовку. В этом смысле лучших результатов удавалось добиться, прибегая к среднемоторной компоновке. Правда, сперва надо разобраться, что это такое. Ведь при переднем приводе двигатель, развернутый маховиком вперед или поперечно расположенный за осью колес, — это вроде бы тоже среднемоторная компоновка.
Обычно этот термин имеет хождение в том случае, когда силовой агрегат приводит задние (или все) колеса, чаще расположен продольно и, как правило, находится за пассажирскими сиденьями.
Вместе с тем иногда к среднемоторным относят и автомобили, чей двигатель расположен спереди, но сдвинут в пределы колесной базы.
Впрочем, в большинстве случаев подобное размещение силового агрегата относят к классическим. А среднемоторная компоновка, по мнению многих, предполагает мотор позади салона.
Эта схема актуальна до сих пор, однако повторимся, используется на специфичных моделях. Как и компоновка с двигателем спереди (при заднем приводе), отодвинутым за ось. Никто уже не разворачивает мотор маховиком вперед — не важно для привода каких колес, передних или задних. Само собой, не пытаются инженеры как-то по-иному располагать двигатель на «переднеприводниках». Размещение его в переднем свесе у VAG и Subaru, похоже, единственное исключение. И на единичных машинах мотор поперечно располагается над задней осью. В общем, устаканилось все. Ломающих стереотипы компоновок ДВС и традиционной трансмиссии ожидать не приходится. Теперь конструкторам все больше нужно думать о том, как раскидать под кузовом компоненты «гибридов» и чистых электромобилей — электромоторы, зарядные двигатели-генераторы, батареи. Что ж, новое время — новые тенденции.
Двигатель внутреннего сгорания автомобиля
В годы СССР автомобили ездили на дровах и являлись большой роскошью. В современном же мире на автомобилях ездит большое количество людей, и автомобиль не является новинкой. Устройство всего автомобиля знать не обязательно, но устройство двигателя важно знать для того, чтобы правильно обслуживать автомобиль (впоследствии это может повлиять на вашу жизнь). Поэтому будет правильным уделить несколько минут на то, чтобы понять, как устроен ДВС автомобиля (4-х тактный).
Двигатель внутреннего сгорания — это двигатель, в котором сжигание топлива происходит в замкнутом пространстве, называемом камерой сгорания. Эта экзотермическая реакция топлива с окислителем создает газы высокой температуры и давления, которые могут расширяться. Отличительной особенностью двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, действующими непосредственно, чтобы вызвать движение, например, воздействуя на поршни, роторы или даже нажимая и двигая весь двигатель в целом.
Термин «двигатель внутреннего сгорания» (ICE) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также являются двигателями внутреннего сгорания.
Общее устройство двигателя
Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.
Наиболее распространенное топливо, используемое сегодня, состоит из углеводородов и в основном из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и нефтяной газ, а также редкое использование пропанового газа. Большинство двигателей внутреннего сгорания, предназначенных для бензина, могут работать на природном газе или сжиженных нефтяных газах без значительных модификаций, за исключением компонентов подачи топлива. Можно также использовать жидкое и газообразное биотопливо, такое как этанол и биодизельное топливо, форму дизельного топлива, которая производится из сельскохозяйственных культур, которые дают триглицериды, такие как соевое масло. Некоторые могут также работать на газообразном водороде.
Все двигатели внутреннего сгорания должны иметь способ достижения воспламенения в своих цилиндрах для создания сгорания. Двигатели используют либо электрический метод, либо систему зажигания от сжатия.
ДВС стоит из множества частей, но здесь будут указаны основные:
- Коленчатый вал с помощью поршня приводит в движение машину;
- Поршень — металлический стакан, размещается внутри
- Цилиндра сдавливает газ, двигает коленчатый вал;
- Цилиндр, в котором происходит сгорание и расширение газа;
- Свеча зажигает газ;
- Клапаны впускают и выпускают газ.
Двигателям свойственно нагревание, а чтобы двигатель не перегрелся, используют систему охлаждения двигателя, состоящую из рубашки охлаждения, насоса, термостата, радиатора, вентилятора и расширительного бачка.
Также, чтобы лучше понять устройство ДВС рекомендуем постмотреть видео «для чайников»
Этапы работы ДВС
У ДВС есть 4 такта работы:
- Впуск. Впускается топливо в камеру горения (движение поршня вниз);
- Сжатие. Топливо сжимается и происходит поджигание свечой (движение поршня вверх);
- Расширение. Смесь сгорает и расширяется (толчок поршня вниз);
- Выпуск. Продукт сгорания выпускается (подъём поршня вверх вверх).
Принцип работы двс
Устройство работы ДВС основано на расширении газов во время работы поршня.
Во время впуска происходит втягивание газа в цилиндр, после чего клапан закрывается, и происходит сжатие газа, смешанного с воздухом, поршнем. Сжатый газ зажигается свечой и, расширяясь, толкает поршень книзу, а поршень, в свою очередь, двигает коленчатый вал, и происходит движение автомобиля.
ДВС — схема работы цилиндров
Процесс зажигания бензина
Электрические / бензиновые системы зажигания (которые также могут работать на других видах топлива, как упоминалось ранее), как правило, полагаются на комбинацию свинцово-кислотной батареи и индукционной катушки, чтобы обеспечить электрическую искру высокого напряжения для воспламенения топливовоздушной смеси в цилиндры двигателя. Эта батарея может заряжаться во время работы с использованием устройства, вырабатывающего электричество, такого как генератор переменного тока или генератор, приводимый в движение двигателем. Бензиновые двигатели принимают смесь воздуха и бензина и сжимают до давления менее 170 фунтов на квадратный дюйм и используют свечу зажигания для зажигания смеси, когда она сжимается головкой поршня в каждом цилиндре.
Процесс зажигания дизельного двигателя
Системы зажигания от сжатия, такие как дизельный двигатели и двигатели HCCI (с воспламенением от сжатия однородного заряда), полагаются исключительно на тепло и давление, создаваемые двигателем в процессе сжатия для воспламенения. Происходящая компрессия обычно более чем в три раза выше, чем у бензинового двигателя. Дизельные двигатели будут всасывать только воздух, и незадолго до пикового сжатия небольшое количество дизельного топлива распыляется в цилиндр через топливный инжектор, который позволяет топливу мгновенно воспламениться. Двигатели типа HCCI будут потреблять как воздух, так и топливо, но будут продолжать полагаться на процесс автоматического сгорания без посторонней помощи из-за более высоких давлений и тепла. Именно поэтому дизельные двигатели и двигатели HCCI также более подвержены проблемам с холодным запуском, хотя после запуска они будут работать так же хорошо в холодную погоду. Большинство дизелей также имеют аккумуляторы и системы зарядки, однако эта система является вторичной и добавляется производителями как роскошь для простоты запуска, включения и выключения топлива, что также может быть выполнено с помощью переключателя или механического устройства, а также для запуска вспомогательных электрических компонентов и аксессуаров. , Однако большинство современных дизелей полагаются на электрические системы, которые также контролируют процесс сгорания, чтобы повысить эффективность и уменьшить выбросы.
Циклы двигателей
Двухтактный
Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода. Поскольку нет специальных ударов впуска или выпуска, необходимо использовать альтернативные методы для очистки цилиндров. Наиболее распространенным методом в двухтактных двигателях с искровым зажиганием является использование движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные с искровым зажиганием маленькие и легкие (для своей мощности), и механически очень простые. Общие области применения включают снегоходы, газонокосилки, травосборники, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы., К сожалению, они также, как правило, громче, менее эффективны и гораздо более загрязняют окружающую среду, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших судах. Эти двигатели используют принудительную индукцию для очистки цилиндров. Двухтактные двигатели менее экономичны по сравнению с другими типами двигателей, поскольку неиспользованное топливо, распыляемое в камеру сгорания, может иногда выходить из вытяжного канала с ранее отработанным топливом. Без специальной обработки выхлопных газов это также приведет к очень высоким уровням загрязнения, что потребует применения в небольших двигателях, таких как газонокосилки, четырехтактных двигателей, а в некоторых странах — двухтактных двигателей меньшего размера, оснащенных каталитическими нейтрализаторами.
Четырехтактный
Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре такта (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах . Как правило, они тише, эффективнее и крупнее двухтактных. Существует ряд вариаций этих циклов, в частности циклы Аткинсона и Миллера. В большинстве грузовых и автомобильных дизельных двигателей используется четырехтактный цикл, но с системой зажигания с компрессионным подогревом. Этот вариант называется дизельным циклом.
Пять-тактный
Двигатели, основанные на пятитактном цикле, являются вариантом четырехтактного цикла. Обычно четыре цикла — это впуск, сжатие, сгорание и выхлоп. Пятый цикл, добавленный Делавуром [2], — это охлаждение. Двигатели, работающие в пятитактном цикле, на 30 процентов эффективнее, чем эквивалентные четырехтактные двигатели.
Двигатель Bourke
В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом кривошипным штифтом, который проходит через общее шотландское ярмо. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, на оборот приходится два рабочих такта. Однако, в отличие от обычного двухтактного двигателя, сгоревшие газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и более эффективной работе. Механизм скотч-хомута также имеет низкую боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндра. Фаза сгорания двигателя Bourke более близко приближается к постоянному объему сгорания, чем четыре или два такта. Он также использует меньше движущихся частей, следовательно, необходимо преодолеть меньшее трениечем два других возвратно-поступательных типа должны. Кроме того, его большая степень расширения также означает, что используется больше тепла от его фазы сгорания, чем для четырехтактного или двухтактного циклов.
Двигатель управляемого сгорания
Это также двигатели на основе цилиндров, которые могут быть одно- или двухтактными, но вместо коленчатого вала и поршневых шатунов используются двухступенчатые соединенные противоположно вращающиеся концентрические кулачки для преобразования возвратно-поступательного движения во вращательное движение. Эти кулачки практически исключают боковые силы, которые в противном случае воздействовали бы на цилиндры поршнями, значительно повышая механическую эффективность. Профили кулачковых выступов (которые всегда нечетные и их не менее трех) определяют ход поршня в зависимости от подаваемого крутящего момента. В этом двигателе есть два цилиндра, которые разнесены на 180 градусов для каждой пары встречно-вращающихся кулачков. Для версий с одним ходом число циклов на пару цилиндров равно количеству выступов на каждом кулачке, в два раза больше для двухтактных блоков.
Ванкеля
Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без поршневых ходов, правильнее было бы назвать четырехфазный двигатель), поскольку фазы происходят в отдельных местах двигателя. Этот двигатель обеспечивает три рабочих такта на оборот на ротор, обеспечивая в среднем более высокое отношение мощности к весу, чем поршневые двигатели. Этот тип двигателя используется в Mazda текущего RX8 и более ранних RX7, а также других моделях.
Газовая турбина
В циклах газовых турбин (в частности, реактивных двигателей) вместо того, чтобы использовать один и тот же поршень для сжатия, а затем расширения газов, вместо этого используются отдельные компрессоры и газовые турбины; давая непрерывную силу. По сути, впускной газ (обычно воздух) сжимается, а затем сжигается с топливом, что значительно повышает температуру и объем. Большой объем горячего газа из камеры сгорания затем подается через газовую турбину, которая затем легко может питать компрессор.
Система зажигания
Двигатели внутреннего сгорания можно классифицировать по их системе зажигания. Точка в цикле, в которой воспламеняется смесь топлива и окислителя, оказывает непосредственное влияние на эффективность и производительность ДВС. Для типичного 4-х тактного автомобильного двигателя горючая смесь должна достигать максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы гарантировать, что фронт пламени не соприкасается с нисходящей головкой поршня. Если передняя часть пламени соприкасается с поршнем, это приводит к розовому воздействию или ударам. Смеси Leaner и более низкие давления смеси сгорают медленнее, что требует более точного выбора времени зажигания. Сегодня большинство двигателей используют электрическую или компрессионную систему отопления для зажигания. Однако системы с открытым пламенем и горячими трубами использовались исторически.Никола Тесла получил один из первых патентов на систему механического зажигания с патентом США 609250 «Электрическое зажигание для газовых двигателей» 16 августа 1898 года.
Процесс зажигания двигателя
Конфигурация двигателя
Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность (с более плавными двигателями, производящими меньше вибрации). Обычные конфигурации включают прямую или линейную конфигурацию, более компактную V-конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут принимать радиальную конфигурацию, которая позволяет более эффективно охлаждать. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».
Конфигурации с несколькими коленчатыми валами вовсе не обязательно должны иметь головку цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, который называется конструкцией с противоположным расположением поршней. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с использованием двух коленчатых валов, по одному на каждом конце одного блока цилиндров, и наиболее примечательно в дизельных двигателях Napier Deltic, которые использовали три коленчатых вала для обслуживания трех рядов двусторонних цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам. Он также использовался в локомотивных двигателях с одной банкой и продолжает использоваться для судовых двигателей, как для движителей, так и для вспомогательных генераторов. Роторный двигатель Gnome, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.
Более детально в видео:
КПД двигателя внутреннего сгорания
Эффективность различных типов двигателей внутреннего сгорания различна. Общепринято, что большинство двигателей внутреннего сгорания, работающих на бензине, даже если им помогают турбокомпрессоры и средства повышения эффективности запаса, имеют механический КПД около 20 процентов. Большинство двигателей внутреннего сгорания тратят около 36 процентов энергии в бензине, поскольку тепло теряется в системе охлаждения, и еще 38 процентов — через выхлопные газы. Остальные, около шести процентов, теряются из-за трения . Большинство инженеров не смогли успешно использовать потерянную энергию для каких-либо значимых целей, хотя существуют различные дополнительные устройства и системы, которые могут значительно повысить эффективность сгорания.
Водородная топливная инъекция, или HFI, является дополнительной системой двигателя, которая, как известно, улучшает экономию топлива двигателей внутреннего сгорания, впрыскивая водород как увеличение сгорания во впускной коллектор. Экономия топлива может быть увеличена на 15-50%. Небольшое количество водорода, добавляемого к топливу воздухозаборника, увеличивает октановое число объединенного топливного заряда и увеличивает скорость пламени., что позволяет двигателю работать с более продвинутым моментом зажигания, более высокой степенью сжатия и более бедной воздушно-топливной смесью, чем это возможно в противном случае. В результате снижается загрязнение, увеличивается мощность и эффективность. Некоторые системы HFI используют встроенный электролизер для выработки используемого водорода. Также можно использовать небольшой резервуар с водородом под давлением, но этот метод требует повторного заполнения.
Также обсуждались новые типы двигателей внутреннего сгорания, такие как двигатель с раздельным циклом Scuderi, которые используют высокое давление сжатия, превышающее 2000 фунтов на квадратный дюйм, и сгорают после верхней мертвой точки (самая высокая и самая сжатая точка во внутреннем сгорании). ход поршня). Ожидается, что такие двигатели достигнут КПД до 50-55%.
Преимущества и недостатки ДВС
К преимуществам ДВС можно отнести большую дальность передвижения без заправки, большую экономию средств, небольшой вес и объём топливного бака. К недостаткам можно отнести маленький средний КПД двигателя (около 40%) при использовании, высокое загрязнение атмосферы, необходимое наличие КПП.
История
Первые двигатели внутреннего сгорания не имели сжатия, но работали на том, какая воздушно-топливная смесь могла всасываться или продуваться в течение первой части такта впуска. Наиболее существенное различие между современными двигателями внутреннего сгорания и ранними конструкциями заключается в использовании сжатия и, в частности, сжатия в цилиндрах.
1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание может не означать, что идея была оригинальной с ним или что она действительно была построена.)
1900: Рудольф Дизель продемонстрировал дизельный двигатель на выставке 1900 Universselle (Всемирная выставка) с использованием арахисового масла (биодизеля).
1900: Вильгельм Майбах разработал двигатель, построенный в Daimler Motoren Gesellschaft — в соответствии со спецификациями Эмиля Джеллинека — который потребовал, чтобы двигатель получил имя Daimler-Mercedes в честь его дочери. В 1902 году автомобили с таким двигателем были запущены в производство DMG.
Заключение
ДВС — очень полезная вещь, но также она способна загрязнять атмосферу. Нужно знать меру в использовании автомобилей, пользоваться ими осторожно, дабы предотвратить несчастные случаи и обеспечить безопасность себе, окружаюей среде и людям.
Источник https://tehavtoservice.ru/dvigatel-transmissiya-chto-eto/
Источник https://www.drom.ru/info/misc/59971.html
Источник https://teritoriya-auto.ru/dvigatel-vnutrennego-sgoraniya-avto/
Источник