Двигатель электрический для электромобиля, прошлое, настоящее и будущее
Где применяется электрический автомобильный двигатель
Электродвигатель для автомобиля, в качестве тягового устройства применялся на автомобилях (вернее на их прототипах), еще раньше, чем двигатель внутреннего сгорания. Однако на сегодняшний день автомобильные электрические машины (именно так они правильно называются), применяются на электромобилях, работающих исключительно на аккумуляторах или других накопителях электрической энергии, а также на гибридных автомобилях.
Гибридные автомобили называются так, потому, что в них есть и двигатель внутреннего сгорания (ДВС), и аккумуляторная батарея.
История создания
Первая, можно сказать лабораторная, модель-прототип электромобиля была создана почти 200 лет назад. Известно, что в 1828 году венгерский изобретатель Джедлик продемонстрировал тележку, которая двигалась за счет электрической энергии. Но этот образец только показал принцип электрической тяги. Ведь настоящий электродвигатель постоянного тока, способный работать достаточно долго, был изобретен в 1833 году физиком из Великобритании Уильямом Стёрдженом. В 1835 году в Голландии Кристофер Беккер и Стратин Гронинген построили первый электромобиль. Конечно, он был несовершенен и в серийное производство не пошел.
Первый патент на электрический двигатель был получен в 1837 году Томасом Дэвенпортом, именно с этого времени можно сказать, что началось строительство электромобилей. Проблема электромобилей того времени была в очень небольшом заряде тогдашних аккумуляторов. Эту проблему пытались решить американец Томас Давенпорт и голландец Роберт Андерсон, которые создали автомобиль, двигающийся за счет электричества от одноразовых гальванических элементов в 1842 году.
Больших успехов в использовании электрической энергии для тяги достигли в 19-том веке железнодорожники. Уже в 1847 году в Питсбурге (США) работал локомотив (можно назвать его первым электровозом), который получал электричество по рельсам. Аккумуляторы были очень ненадежные и с очень небольшим ресурсом, да и энергии они запасали мало. И только улучшение рабочих характеристик аккумуляторных батарей решило проблему использования электромобилей. Нужно отметить, что первый рекорд скорости превышающей 100 км/час был зафиксирован именно электромобилем.
Так в 1899 году бельгиец Камиль Женатци на электромобиле «La Jamais Contente» разогнался до 105,882 км/ч. Как видно на рисунке (слева) этот электромобиль на резиновом ходу (на пневматических шинах), это тоже было новшеством на тот момент.
Немногим раньше в Лондоне было запущено движение электрических омнибусов (тогдашних автобусов) благодаря Ральфу Уорду. В это же время в Нью-Йорке начали работать такси на электротяге, стали выпускаться электровелосипеды и многие другие подвижные единицы на электричестве. В России они (электромобили, точнее омнибусы) появились в 1901 году (фото справа) разработки инженера Романова. Уже в 1902 году заводом «Дукс» в Москве выпускался электромобиль для частного использования (фото слева).
Напомним, что только в 1878 году Николаусом Отто был запущен в серию четырехтактный двигатель внутреннего сгорания, который можно было устанавливать на автомобиль. Он с некоторыми доработками служит «верой и правдой» автомобилистам и по сей день.
Да, двигатель Отто и резкое падение цен на нефть, из которой получают бензин, вытеснило электромобили почти на 100 лет с рынка, но они вновь завоевывают себе «место под солнцем», тесня классические ДВС. Все это благодаря тому, что электромобили практически бесшумны, экологически безвредны и экономически выгодны в эксплуатации. Нужно напомнить, что КПД электродвигателя высокий и составляет (85…95 %), да и электричество дешевеет. Если его (электричество) получать при помощи солнечных батарей или ветрогенераторов, то эксплуатация электромобиля получается почти бесплатной.
На сегодняшний день доля электромобилей среди всего автопарка составляет около 1%, но это пока. За последние 2 года количество продаж электрокаров увеличилось на 45%. Осталось только подождать, когда бензиновые и дизельные автомобили потихоньку сойдут с рынка.
Принцип работы электромобиля
Классическая схема электромобиля представлена на рисунке справа. Аккумуляторы расположенные здесь вдоль кузова отдают свою энергию через устройство управления (УУ) электродвигателю (ЭД), а он вращает колеса. Но эта компоновка далека от совершенства. Дело в том, что электропривод имеет очень важное преимущество перед любыми другими типами приводов – рекуперация. Рекуперация, это преобразование энергии движения в электрическую. Все мы с вами знаем, что энергия никуда не исчезает, она может только преобразовываться из одного вида в другой. Так вот, энергия движения (кинетическая энергия) при торможении автомобиля преобразуется в тепловую. Мы с вами просто нагреваем тормозные колодки, и это тепло отдаем атмосфере. То есть, по сути дела выбрасываем эту энергию. В электромобилях и в гибридах мы можем большую часть кинетики преобразовать в электричество и опять накопить его в аккумуляторе.
Гибридные автомобили всегда имеют кроме аккумулятора и двигатель внутреннего сгорания. Зачем? Для того чтобы удлинить расстояние езды на электромобиле. Дело в том, что даже современные аккумуляторы могут накопить энергии на 100, ну максимум на 200 километров пробега. Согласитесь, что это совсем немного. При использовании ДВС, в качестве дополнительного источника энергии можно удлинить путь до 800, а иногда и до 1000 километров без подзарядки аккумулятора и без дозаправки бензином или дизельным топливом.
Как правило, на авто такого типа (гибридных автомобилях) нет прямого воздействия двигателя на ведущие колеса. ДВС вращает генератор, который вырабатывает электрическую энергию, и уже эта энергия подается на электродвигатели либо на накопители энергии, если автомобиль едет по инерции или стоит (на светофоре, например). Накопителями энергии могут быть не только аккумуляторы, в последнее время все большей популярностью пользуются суперконденсаторы.
Двигатель на гибридных автомобилях может быть подключен к генератору, который вырабатывает электричество. Электричество это можно использовать для разгона (его обычно не хватает, аккумулятор плохо отдает электроэнергию на старте), или для зарядки аккумулятора, если авто на выбеге или стоянке. Крайне редко ДВС не подключен к генератору. При такой схеме ДВС помогает электродвигателю разгонять автомобиль.Где же экономия? Все дело в том, что при любой схеме подключения ДВС и электродвигателя, двигатель внутреннего сгорания всегда работает в номинальном режиме. В котором достигается максимальная экономия. КПД у ДВС всегда указывается для номинального режима и он колеблется от 36 до 42. Для малых оборотов этот КПД не превышает 7…10%.
Существует и более сложные системы. Вот, например, как взаимодействуют детали в современном гибридном автомобиле «Тойота Приус». Здесь ДВС может работать на генератор, а может и помогать вращать ведущие колеса через планетарный механизм. При торможении, мотор/генератор (MG2) преобразует кинетическую энергию в электрическую, заряжая аккумулятор. В результате чего достигается неплохая экономия. Да это сложно, но это того стоит. Расход у Тойоты-Приус около 3-х литров бензина на 100 километров.
Устройство тягового электродвигателя автомобиля
Устройство электродвигателя автомобиля зависит, от многих факторов. Электродвигатели для электромобилей могут быть как постоянного, так и переменного тока. В последнее время на машину такого типа ставят только двигатель переменного тока (синхронный или асинхронный). Первые электромоторы для автомобилей были, конечно, постоянного тока. Это и логично, потому как аккумулятор выдает постоянный ток, и двигатель электрический также постоянного тока. Их применяют и сейчас, но уже гораздо реже. Однако, все не так просто, как кажется на первый взгляд. Электродвигатели переменного тока гораздо экономичнее и надежнее. Выглядеть они могут точно так же как и электродвигатели постоянного тока. Разные типы электродвигателей имеют различную маркировку. AC – говорит о том, что этот двигатель переменного тока, DC – постоянного.
Принцип работы любого электродвигателя состоит во взаимодействии магнитных полей. Еще Фарадей на заре электричества заметил, что если проводник, по которому течет ток, поместить в постоянное магнитное поле, то этот проводник стремится вырваться из этого поля отклоняясь в ту или иную сторону в зависимости от направления движения тока. Если этих проводников много, и магнитное поле сильное, то и работа такого двигателя постоянного тока будет соответствующей.
В каждом электродвигателе есть ротор (его иногда называют якорь) и статор (его еще называют индуктором). Ротором является вращающееся часть, статором – не вращающееся (стационарная). И ротор и статор имеют обмотки состоящие из отдельных проводников. Для подачи электрического тока на вращающуюся часть двигателя существует коллектор (набор медных пластин собранных в цилиндр). От статора на коллектор ток передается при помощи специальных щеток. Взаимодействие магнитных полей заставляет ротор совершать вращение.
Электродвигатели переменного тока работают несколько по-другому. Статор создает магнитное поле, которое само вращается. Оно (поле) может увлекать за собой стальные предметы, то есть заставлять вращаться ротор. По этой причине на роторе обмотка не нужна. Но в этом случае скорость вращения ротора будет отставать от скорости вращения магнитного поля статора. Такие электродвигатели нарываются асинхронными.
Для того, чтобы точно знать с какой частотой вращается ротор и регулировать эту частоту, необходимо на роторе разместить электрическую обмотку. Такие электродвигатели называются синхронными. Но вновь появляется слабое звено электродвигателя – коллектор. Щетки изнашиваются и их нужно менять. Асинхронные двигатели в обслуживании не нуждаются.
На рисунке представлено два вида синхронных двигателей (с явными и неявными полюсами). Повторимся, что асинхронный двигатель отличается лишь тем, что на якоре нет обмотки.
При работе каждый электродвигатель нагревается. По этой причине тема охлаждения электрических машин очень важна. Система охлаждения может быть автономная и принудительная. На электродвигателях большегрузных автомобилей, например БелАЗ, охлаждение принудительное (воздух для охлаждения подается специальным вентилятором). У машин малого класса и легковых, на самом двигателе есть крыльчатка, которая продувает воздух через двигатель, тем самым охлаждая его.
Характеристики электродвигателей автомобильных
Характеристика электродвигателя, это соотношение его параметров к его цене. Лучше всего это представить в табличной форме. В таблице представлены популярные электродвигатели как постоянного DC, так и переменного AC тока. Напряжение у некоторых двигателей имеет несколько значений, это значит, что они способны работать на всех указанных напряжениях. Мощность N указана номинальная. Вращающий момент M, тоже при номинальном режиме работы. Частота вращения указана как максимально допустимая.
Характеристики электрического двигателя автомобиля невозможно сравнивать спонтанно. Для каждого конкретного случая, для определенного автомобиля, может быть разработан свой, оригинальный электродвигатель. Но электродвигатель переменного тока, а он здесь представлен один, явно отличается в лучшую сторону, от электродвигателей постоянного тока той же мощности, хотя бы по соотношению цены и вырабатываемой мощности (AC – 10.7 $/кВт, DC – 450 $/кВт).
Перспективы развития
Внедрение синхронных и асинхронных двигателей на автомобилях тормозилось медленным развитием электроники способной контролировать процессы в этих самых двигателя. Теперь эти барьеры снимаются, электроника становится надежной и относительно дешевой. По этой причине в скором времени электродвигатели переменного тока на электромобилях скорее всего будут внедряться практически повсеместно.
Изобретение новых конструкционных материалов позволяет повышать надежность и долговечность электродвигателей.
Электрические двигатели в автомобиле
Электрические двигатели в автомобиле — это электрические машины (электромеханические преобразователи), в которых электрическая энергия преобразуется в механическую. В основу работы подавляющего числа электрических машин положен принцип электромагнитной индукции. Вот о том, что представляют собой электрические двигатели, мы и поговорим в этой статье.
Систематика роторных электрических машин
Электрические двигатели в автомобиле являются электро-магнето-механическими преобразователями энергии. При энергии Wm, имеющейся в магнитном поле, разряд, согласно углу вращения γ, создает магнитную силу Ft:
Она служит тангенциальной силой для создания крутящего момента, вычисляемого по радиусу ротора r (рис. «Принцип работы роторных электрических машин» ). Это можно описать выражением:
М = Ft r .
Электрические машины можно поделить на категории по их управлению (табл. «Систематический подход к электрическим двигателям»). Часть этой систематизации взята из стандарта DIN 42027.
Двигатели постоянного тока
Для работы в качестве двигателей часто выбираются двигатели постоянного тока. Они используются, например, в качестве приводов для электрических топливных насосов, вентиляторных электродвигателей, пусковых электродвигателей, электродвигателей стеклоочистителей ветрового стекла и стеклоподъемников.
Двигатель постоянного тока (рис. «Структура двухполюсного эектродвигателя переменного тока» ) состоит из статора с возбуждающей, компенсирующей и коллекторной обмотками, а также ротора (якоря) с роторной обмоткой. Ротор запитывается через коллекторные щетки и коллекторные пластины. Обмотки можно соединять параллельно или последовательно.
Двигатели постоянного тока классифицируются по различным характеристикам (с последовательным или параллельным возбуждением). Приведенные вычисления относятся к самокоммутирующимся двигателям. Схемы соединений двигателей постоянного тока регламентируются стандартом DIN EN 60034, часть 8.
Коммутация в двигателе постоянного тока
Для работы двигателя постоянного тока необходимо, чтобы направление тока в роторе оставалось постоянным относительно полюсов статора (рис. «Принцип коммутации тока» ). Процесс изменения направления тока в роторе происходит в нейтральной зоне и называется коммутацией. Коммутатор получает ток IR через коллекторные щетки. Он делится на токи ветвей Izw. Напряжение, наводимое в обмотках, вычисляется по формуле:
Тангенциальная скорость vt поверхности коллектора:
Для определения длительности цикла Тс учитывается количество коллекторных пластин:
Изменение тока в коллекторной обмотке происходит за время Тс. Если учесть, что имеет место лишь ток Izw, то для наведенного напряжения применяется следующее:
u = -L (Izw vt K / πdc)
Обозначения берутся из DIN 1304. часть 7.
Коммутирующая и компенсирующая обмотки
Распределение поля
Главное поле, беспрепятственно проникающее в ротор при отсутствии тока, имеет симметричное распределение (рис. а, «Наложение полей» ). Аналогично, имеется симметричное разделение потока, когда ток подается только на ротор (рис. Ь, «Наложение полей» ).
При наложении этих полей нейтральная зона отклоняется на угол β (рис. с, «Наложение полей» ). Таким образом, эта магнитно-нейтральная зона больше не соответствует геометрически нейтральной зоне (положение коллекторных щеток).
В геометрически нейтральной зоне это создает магнитное поле, которое в процессе коммутации наводит напряжение в обмотке ротора, вызывая искрение между щеткой и движущейся коллекторной пластиной. Во избежание этого в процессе коммутации в этой обмотке наводится другое напряжение, где амплитуда и направление компенсируют эффект изначально наведенного напряжения. Это достигается с помощью коммутирующей обмотки (рис. «Структура двухполюсного электродвигателя переменного тока» ). Коммутирующая обмотка последовательно подключается к обмотке ротора. Она использует обратную реакцию ротора для противодействия смещению в магнитно-нейтральной зоне.
В случае с двигателями без коммутирующей обмотки щетки нужно смещать в магнитно-нейтральную зону. Возмущение основного поля, возникающее в области полюсного башмака, ведет к снижению доступной поверхности клеммы вкупе с ростом магнитного сопротивления. Вот почему у более крупных двигателей имеется компенсирующая обмотка, встроенная как полюсный башмак (рис. «Структура двухполюсного электродвигателя переменного тока» ). Компенсирующая обмотка последовательно соединяется с обмоткой ротора, и ее размеры таковы, чтобы компенсировать поперечное поле ротора.
Эффект коммутирующей и компенсирующей обмоток
Последовательность изображений на рис. «Эффект компенсирующей и коммутирующей обмоток» описывает эффект обеих обмоток. Показаны распределения полей в воздушном зазоре. Расположение полюсов с обмоткой и нейтральной зоной показано на рис. а. Распределение поля возбуждения ВE(х) под полюсным башмаком, а также полюсное деление τР показаны на рис. Ь. На рис. с показано распределение поперечного поля ротора Br(x). Наложение обоих распределений полей можно увидеть на рис. d. Компенсирующая индукция Bk(x) (рис.5е) и наложение из рис. d показаны на рис. f. Если коммутирующая индукция Bw(x) на рис. g накладывается на распределение поля из рис. f, то получаем желаемое распределение поля согласно рис. h.
Расчет тангенциальной силы ротора
Для создания крутящего момента на роторе необходима тангенциальная сила. Объекты исследования — статор и ротор с канавкой (рис. «Расположение статора и ротора» ), в которой находится токоведущий проводник (прядь обмотки). Ротор перемещается из положения 1 в положение 2. Поток статора Фs создает индукцию Bs в воздушном зазоре, а проводник в роторе, через который протекает ток, вызывает индукцию ВR. С левой стороны канавки образуется деструктивное, а с правой стороны — конструктивное наложение этих двух индукций. Энергия, накопленная в воздушном зазоре с левой стороны канавки, равна:
С правой стороны канавки она равна:
dW1 = (δIL/2μ0) (Bs 2 +BR 2 )dx (уравнение 2).
Работа dW, выполняемая в этой части, получается из разности между энергиями dW1 и dW2:
dW = dW1- dW2 = Ft dx (уравнение 3).
Уравнения 1, 2 и 3 можно использовать для вычисления силы Ft. Это можно описать выражением:
Ft = (lRδ/2μ0) BR 2
Магнитно-эффективная длина ротора равна lR. Сила Ft — это квадратичная функция индукции провода, по которому протекает ток. Влияния индукции статора компенсируют друг друга. Поскольку силы на пограничных слоях всегда воздействуют в направлении низкой проницаемости, то они влияют на крутящий момент из-за потоков, возникающих по бокам от канавки.
Электродвигатель параллельного возбуждения
Особенностью электродвигателя параллельного возбуждения является то, что обмотка ротора параллельно соединяется с обмоткой возбуждения. Для электродвигателя параллельного возбуждения действуют следующие условия подключения (рис. «Обозначение подключений электродвигателя с параллельным возбуждением» ):
- А — обмотка ротора:
- А — коммутирующая обмотка;
- С — Компенсирующая обмотка;
- Е — обмотка возбуждения.
Расчет электродвигателя параллельного возбуждения базируется на сопротивлении ротора RA и напряжении, наводимом обмоткой ротора. Напряжение на клеммах UKl составляется из напряжения ротора UA = IА RA и наведенного напряжения Uind = c1 n ФS:
UKl = IА RA + c1 n ФS (уравнение 4).
Здесь с1 обозначает конструктивно определяемую константу двигателя, зависящую от количества катушек в обмотке ротора, n — частота вращения, ФS — поток статора, IА — ток ротора.
Решение уравнения 4 для n дает скорость вращения (уравнение частоты вращения — тока ротора):
Если момент двигателя Мм = с2ФS IАвставить в уравнение частоты вращения — тока ротора (уравнение 5), то получим уравнение частоты вращения — крутящего момента
с2 — это тоже конструктивно определяемая константа двигателя, зависящая от количества катушек в обмотке ротора.
На рис. «Зависимость частоты вращения от крутящего момента электродвигателя с параллельным возбуждением» показаны рабочие характеристики электродвигателя параллельного возбуждения. Для преодоления трения двигатель должен развивать фрикционный момент MR. В момент включения частота вращения равна нулю. Это позволяет вычислить пусковой момент
в уравнении 6. При теоретически самой высокой частоте вращения на характеристической кривой (холостые обороты), двигатель не развивает крутящий момент. Холостые обороты n0 равны
Электродвигатель с последовательным возбуждением
У электродвигателя с последовательным возбуждением коммутирующая, компенсирующая, возбуждающая обмотки статора и обмотка ротора соединяются последовательно (рис. «Обозначение подключений электродвигателя с последовательным возбуждением» ). D обозначает обмотку возбуждения электродвигателя с последовательным возбуждением. Чтобы определить рабочие характеристики, суммируем сопротивления обмоток, и получаем сопротивление RA.
Точно таким же образом, как и в случае с электродвигателем параллельного возбуждения, напряжение на клеммах UKL складывается из напряжения ротора и наведенного напряжения:
В результате получаем уравнение скорости вращения:
Магнитный поток можно вычислить с помощью другой константы двигателя с3:
Ф = с3 IА (уравнение 9).
Константа двигателя с3 имеет единицу индуктивности и поэтому зависит от геометрии, количества катушек и проницаемости. Крутящий момент двигателя Мм вычисляется по формуле
Мм = с2с3IА 2 (уравнение 10).
Если уравнение 10 скорректировать согласно IА, это выражение будет действительно в уравнении 9 и оно, в свою очередь, в уравнении частоты вращения — тока (уравнение 8). В результате получаем:
n = (- RA/c1·с3) + (UKl √с2·с3/с1·с3) (1/√Мм ) (уравнение 11).
В отличие от электродвигателя с параллельным возбуждением, здесь частота вращения пропорциональна соответствующему значению корня крутящего момента (рис. «Зависимость частоты вращения от крутящего момента электродвигателя с последовательным возбуждением» ). Двигатель характеризуется значительным падением частоты вращения при малой нагрузке. Если внешняя нагрузка на двигатель будет равна нулю, то частота вращения теоретически будет стремиться к бесконечности.
Тяговый электродвигатель для электромобиля: как электрокары на нем работают
Неотвратимым будущим автомобилестроения, хотим мы того или нет, являются электрические автомобили. Производители авто во всем мире вкладывают огромные средства в их разработку, желая снизить концентрацию вредных веществ выбрасываемых автомобилями традиционными, сделать поездки безопасными и комфортными, а также экономичными. Работа по их созданию проводится в двух направлениях – создание новых моделей и реконструкция серийных, которая более предпочтительна, поскольку менее затратная. Электромобили, по сравнению с традиционными, более надежны, поскольку более просты по конструкции, т.е. отличаются минимумом движущихся частей.
Крупнейшими рынками электрических автомобилей являются сегодня: США и Норвегия, Япония и Германия, Китай и Франция, Великобритания и др. Наша страна пока от производства и использования новых средств передвижения находится в стороне, исключая энтузиастов, разработавших Lada Ellada. Но, это случай пока единичный, поэтому он не в счет, тем более, что собрано авто на импортных комплектующих.
Понятие «электрический автомобиль» означает средство передвижения, приводимое в движение несколькими (или одним) электродвигателями. Теоретически питание мотора может быть от аккумулятора, топливных элементов или солнечных батарей. Тем не менее, большее распространение получил вариант первый. Батарея, питающая двигатель требует зарядки, осуществлять которую можно при помощи внешних источников, рекуперации или генератора, установленного на борту автомобиля. Электродвигатель, являющийся основным элементом электромобиля, питается, как правило, от литий — ионной батареи. Он же, в режиме рекуперации, играет роль генератора, заряжающего батарею.
Назначение тягового электродвигателя
Электродвигатель тяговый (ТЭД) предназначен для приведения в движение транспортного средства, т.е. он преобразует в механическую, энергию электрическую. Их классифицируют по способу питания, роду тока, конструктивному исполнению, типу привода колесных пар. В большинстве экологичных машин: гибридных авто, серийных электромобилях, авто на топливных элементах, которые в наши дни приобретают завидную популярность, они являются основной движущей силой.
В качестве двигателя используют в них моторы тяговые постоянного тока, которые работают в двух режимах – двигательном и генераторном.
Видео: Как устроен двигатель электромобиля Tesla Model S
Принцип работы
Принцип работы электромобиля Golf blue-e-motion с тяговым электродвигателем
В основе их работы лежит принцип электромагнитной индукции, т.е. возникновение в замкнутом контуре электродвижущей силы при изменении магнитного потока. От традиционной машины электромеханической ТЭД отличается большей мощностью, более компактными размерами, а кроме этого, у него более высокий КПД.
По способу питания моторы делятся на двигатели постоянного и переменного тока. По числу фаз – на:
- однофазные (с одной обмоткой, подключаемой к сети однофазной переменного тока),
- двухфазные (две обмотки, расположенные под углом девяносто градусов),
- трехфазные (три обмотки с магнитными полями через 120 градусов).
По исполнению конструктивному двигатели могут быть: коллекторными, преимущественно работающие на постоянном токе (универсальные современные могут также работать и на токе переменном), бесколлекторными, синхронными, асинхронными. Наконец, по способу возбуждения они делятся на: двигатели с последовательным, параллельным, последовательно-параллельным возбуждением и от постоянных магнитов.
Основные характеристики тягового электродвигателя электрического автомобиля
В современных авто электродвигатель может быть от переменного или постоянного тока. Основной его задачей является передача на движитель авто крутящего момента. Основными характеристиками ТЭД помимо максимального крутящего момента и мощности, являются: частота вращения, ток и напряжение.
В автомобилях чаще используют коллекторные двигатели (один из них благодаря способности вращаться в обратную сторону, может работать как генератор). Но, в отдельных моделях устанавливают электрические моторы и других типов – магнитоэлектрические моторы, подразделяющиеся на двигатели переменного и постоянного тока. Тяговые двигатели электрические, установленные в электромобилях, от других электромоторов не отличаются по конструкции.
Мотор-колесо
Если вначале использовали один тяговый электродвигатель для электромобиля, редуктор которого соединен с трансмиссией, то сегодня все чаще обращаются к мотор-колесу. Суть концепции состоит в том, что компьютерная программа управляет при помощи отдельных моторов каждым из колес.
Главным преимуществом является отсутствие трансмиссии, из-за которой силовая установка теряет значительную часть энергии. Помимо этого удается ликвидировать тормозную гидравлическую систему, функцию которой берут на себя электромоторы, а также отдельные механизмы ESP и ABS.
Источник http://znayauto.ru/dvigatel/dvigatel-elektricheskiy-dlya-elektromobilya-proshloe-nastoyashee-i-budushee.html
Источник https://press.ocenin.ru/elektricheskie-dvigateli-v-avtomobil/
Источник https://motocarrello.ru/jelektrotehnologii/1235-tjagovyj-jelektrodvigatel-dlja-jelektromobilja.html
Источник