Влияние диаметра цилиндра и хода поршня на эффективный кпд двигателя внутреннего сгорания
44345 2
Объём камеры сгорания в известной степени указывает на количество вводимой теплоты. Теплотворная способность поступающего заряда в бензиновом двигателе определена соотношением воздуха и топлива, близким к стехиометрическому. В дизель подаётся чистый воздух, а подача топлива ограничена степенью неполноты сгорания, при которой в отработавших газах появляется дым. Поэтому связь количества вводимой теплоты с объёмом камеры сгорания достаточно очевидна [2].
Наименьшим отношением поверхности к заданному объёму обладает сфера. Тепло в окружающее пространство отводится поверхностью, поэтому масса, имеющая форму шара, охлаждается в наименьшей степени. Эти очевидные соотношения учитываются при проектировании камеры сгорания. Следует, однако, иметь в виду геометрическое подобие деталей двигателей разных размеров. Как известно, объём сферы равен 4/3∙π∙R 3 , а её поверхность — 4∙π∙R 2 , и, таким образом, объём с ростом диаметра увеличивается быстрее, чем поверхность, и, следовательно, сфера большего диаметра будет иметь меньшую величину отношения поверхности к объёму. Если поверхности сферы разного диаметра имеют одинаковые перепады температур и одинаковые коэффициенты теплоотдачи α , то большая сфера будет охлаждаться медленнее.
Двигатели геометрически подобны, когда они имеют одинаковую конструкцию, но отличаются размерами. Если первый двигатель имеет диаметр цилиндра, например, равный единице, а у второго двигателя он в 2 раза больше, то все линейные размеры второго двигателя будут в 2 раза, поверхности — в 4 раза, а объёмы — в 8 раз больше, чем у первого двигателя. Полного геометрического подобия достичь, однако, не удаётся, так как размеры, например, свечей зажигания и топливных форсунок одинаковы у двигателей с разными размерами диаметра цилиндра.
Из геометрического подобия можно сделать тот вывод, что больший по размерам цилиндр имеет и более приемлемое отношение поверхности к объёму, поэтому его тепловые потери при охлаждении поверхности в одинаковых условиях будут меньше.
При определении мощности нужно, однако, учитывать некоторые ограничивающие факторы. Мощность двигателя зависит не только от размеров, т. е. объёма цилиндров двигателя, но и от частоты его вращения, а также среднего эффективного давления. Частота вращения двигателя ограничена максимальной средней скоростью поршня, массой и совершенством конструкции кривошипно-шатунного механизма. Максимальные средние скорости поршня бензиновых двигателей лежат в пределах 10—22 м/с. У двигателей легковых автомобилей максимальное значение средней скорости поршня достигает 15 м/с, а значения величины среднего эффективного давления при полной нагрузке близки к 1 МПа.
Рабочий объём двигателя и его размеры определяют не только геометрические факторы. Например, толщина стенок задана технологией, а не нагрузкой на них. Теплопередача через стенки зависит не от их толщины, а от теплопроводности их материала, коэффициентов теплоотдачи на поверхностях стенок, перепада температур и т. д. Колебания давления газа в трубопроводах распространяются со скоростью звука независимо от размеров двигателя, зазоры в подшипниках определяются свойствами масляной пленки и т. д. Некоторые выводы относительно влияния геометрических размеров цилиндров, тем не менее, необходимо сделать.
Преимущества и недостатки цилиндра с большим рабочим объёмом
Цилиндр большего рабочего объёма имеет меньшие относительные потери теплоты в стенки. Это хорошо подтверждается примерами стационарных дизелей с большими рабочими объёмами цилиндров, которые имеют очень низкие удельные расходы топлива. В отношении легковых автомобилей это положение, однако, подтверждается не всегда.
Анализ уравнения мощности двигателя показывает, что наибольшая мощность двигателя может быть достигнута при небольшой величине хода поршня.
Средняя скорость поршня может быть вычислена как
где S — ход поршня, м; n — частота вращения, мин -1 .
При ограничении средней скорости поршня Cп частота вращения может быть тем выше, чем меньше ход поршня. Уравнение мощности четырёхтактного двигателя имеет вид
где Vh — объём двигателя, дм 3 ; n — частота вращения, мин -1 ; pe — среднее эффективное давление, МПа.
Следовательно, мощность двигателя прямо пропорциональна частоте его вращения и рабочему объёму. Тем самым к двигателю одновременно предъявляются противоположные требования — большой рабочий объём цилиндра и короткий ход. Компромиссное решение состоит в применении большего числа цилиндров.
Наиболее предпочтительный рабочий объём одного цилиндра высокооборотного бензинового двигателя составляет 300—500 см 3 . Двигатель с малым числом таких цилиндров плохо уравновешен, а с большим — имеет значительные механические потери и обладает поэтому повышенными удельными расходами топлива. Восьмицилиндровый двигатель рабочим объемом 3000 см 3 имеет меньший удельный расход топлива, чем двенадцатицилиндровый с таким же рабочим объёмом.
Для достижения малого расхода топлива целесообразно применять двигатели с малым числом цилиндров. Однако одноцилиндровый двигатель с большим рабочим объёмом не находит применения в автомобилях, поскольку его относительная масса велика, а уравновешивание возможно лишь при использовании специальных механизмов, что ведёт к дополнительному увеличению его массы, размеров и стоимости. Кроме того, большая неравномерность крутящего момента одноцилиндрового двигателя неприемлема для трансмиссий автомобиля.
Наименьшее число цилиндров у современного автомобильного двигателя равно двум. Такие двигатели с успехом применяют в автомобилях особо малого класса («Ситроен 2CV», «Фиат 126»). Сточки зрения уравновешенности, следующим в ряду целесообразного применения стоит четырёхцилиндровый двигатель, однако в настоящее время начинают применять и трёхцилиндровые двигатели с небольшим рабочим объёмом цилиндров, поскольку они позволяют получить малые расходы топлива. Кроме того, меньшее число цилиндров упрощает и удешевляет вспомогательное оборудование двигателя, так как сокращается число свечей зажигания, форсунок, плунжерных пар топливного насоса высокого давления. При поперечном расположении в автомобиле такой двигатель имеет меньшую длину и не ограничивает поворот управляемых колёс.
Трёхцилиндровый двигатель позволяет использовать унифицированные с четырёхцилиндровым основные детали: гильзу цилиндра, поршневой комплект, шатунный комплект, клапанный механизм. Такое же решение возможно и для пятицилиндрового двигателя, что позволяет при необходимости увеличения мощностного ряда вверх от базового четырёхцилиндрового двигателя избежать перехода на более длинный шестицилиндровый.
В дизелях помимо уменьшения потерь теплоты при сгорании большой рабочий объёмом цилиндра даёт возможность получить более компактную камеру сгорания, в которой при умеренных степенях сжатия создаются более высокие температуры к моменту впрыска топлива. У цилиндра с большим рабочим объёмом можно использовать форсунки с большим числом сопловых отверстий, обладающих меньшей чувствительностью к нагарообразованию.
Отношение хода поршня к диаметру цилиндра
Частное от деления величины хода поршня S на величину диаметра цилиндра D представляет собой широко употребляемое значение отношения S/D . Точка зрения на величину хода поршня в течение развития двигателестроения менялась.
На начальном этапе автомобильного двигателестроения действовала так называемая налоговая формула, на основе которой взимаемый налог на мощность двигателя рассчитывался с учетом числа и диаметра D его цилиндров. Классификация двигателей осуществлялась также в соответствии с этой формулой. Поэтому отдавалось предпочтение двигателям с большой величиной хода поршня с тем, чтобы увеличить мощность двигателя в рамках данной налоговой категории. Мощность двигателя росла, но увеличение частоты вращения было ограничено допустимой средней скоростью поршня. Поскольку механизм газораспределения двигателя в этот период не был рассчитан на высокую оборотность, то ограничение частоты вращения скоростью поршня не имело значения.
Как только описанная налоговая формула была упразднена, и классификация двигателей стада проводится в соответствии с рабочим объёмом цилиндра, ход поршня начал резко уменьшаться, что позволило увеличить частоту вращения и, тем самым, мощность двигателя. В цилиндрах большего диаметра стало возможным применение клапанов больших размеров. Поэтому были созданы короткоходные двигатели с отношением S/D , достигающим 0,5. Усовершенствование механизма газораспределения, особенно при использовании четырех клапанов в цилиндре, позволило довести номинальную частоту вращения двигателя до 10000 мин -1 и более, вследствие чего удельная мощность быстро возросла.
В настоящее время большое внимание уделяется уменьшению расхода топлива. Проведённые с этой целью исследования влияния S/D показали, что короткоходные двигатели обладают повышенным удельным расходом топлива. Это вызвано большой поверхностью камеры сгорания, а также снижением механического КПД двигателя из-за относительно большой величины поступательно движущихся масс деталей шатунно-поршневого комплекта и роста потерь на приводы вспомогательного оборудования. При очень коротком ходе нужно удлинять шатун с тем, чтобы нижняя часть юбки поршня не задевалась противовесами коленчатого вала. Масса поршня при уменьшении его хода мало уменьшилась и при использовании выемок и вырезов на юбке поршня. Для снижения выброса токсичных веществ в отработавших газах целесообразнее применять двигатели с компактной камерой сгорания и с более длинным ходом поршня. Поэтому в настоящее время от двигателей с очень низким отношением S/D отказываются.
Рис. 1 |
---|
Влияние отношения хода поршня S к диаметру цилиндра D на среднее эффективное давление pe гоночных автомобилей |
Зависимость среднего эффективного давления от отношения S/D у лучших гоночных двигателей, где четко видно снижение pe при малых отношениях S/D , приведена на рис. 1. В настоящее время более выгодным считается отношение S/D , равное или несколько большее единицы. Хотя при коротком ходе поршня отношение поверхности цилиндра к его рабочему объёму при положении поршня в НМТ меньше, чем у длинноходных двигателей, нижняя зона цилиндра не так важна для отвода теплоты, поскольку температура газов уже заметно падает.
Длинноходный двигатель имеет более выгодное отношение охлаждаемой поверхности к объёму камеры сгорания при положении поршня в ВМТ, что более важно, так как в этот период цикла температура газов, определяющая потери теплоты, наиболее высока. Сокращение поверхности теплоотдачи в этой фазе процесса расширения уменьшает тепловые потери и улучшает индикаторный КПД двигателя.
Читайте также
Гидромуфты и гидротрансформаторы
Гидромуфта открыла путь к созданию автоматической коробки передач. Сама по себе она не может увеличивать передаваемый момент, но ее пробуксовка уменьшает рывки автомобиля при переключении передач.
Увеличиваем пробег
Современные технологии помогут сделать двигатель внутреннего сгорания более экологически чистым.
Сноски
-
Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 186 — 192 (книга есть в библиотеке сайта). – Прим. icarbio.ru Узнать больше о эффективном КПД. – Прим. icarbio.ru
Комментарии
Добрый день. Я разработал 4х цилиндровый 4х тактник,но по принципу работы одноцилиндрового двс,т.е. все четыре цилиндра работают одновременно и от одной камеры сгорания,к тому же регулируемой.Комментарии или заинтересованность к моей разработке присылать на электронку. Разработка находится на стадии патентования. Спасибо.
Диаметр цилиндра двигателя это
Поршневой двигатель внутреннего сгорания состоит из следующих механизмов и систем:
- кривошипно-шатунный механизм (КШМ);
- газораспределительный механизм (ГРМ);
- система охлаждения;
- смазочная система;
- система питания;
- система зажигания (в карбюраторном двигателе);
- система электрического пуска двигателя.
В поршневом ДВС (рис. 1) преобразование энергии происходит в замкнутом объеме, который образован цилиндром, крышкой (головкой) цилиндра и поршнем. В карбюраторном двигателе горючая смесь вводится в цилиндр через впускной клапан, смешиваясь с остатками отработавших газов — образует рабочую смесь, которая сжимается поршнем и воспламеняется. Образовавшиеся при сгорании газы перемещают поршень, который через шатун передает усилие на кривошип коленчатого вала, поворачивая его вокруг оси. Отработавшие газы вытесняются при обратном движении поршня через выпускной клапан. Таким образом, тепловая энергия преобразуется в механическую, а возвратно-поступательное движение — во вращательное как наиболее удобный для трансформации вид движения.
Рис. 1.
Схема четырехтактного одноцилиндрового карбюраторного двигателя:
1 — распределительный вал; 2 — толкатель; 3 — цилиндр; 4 — поршень; 5 — штанга; 6 — впускной клапан; 7 — коромысло; 8 — свеча зажигания; 9 — выпускной клапан; 10 — поршневые кольца; 11 — шатун; 12 — коленчатый вал; 13 — поддон
При вращении коленчатого вала поршень дважды за один оборот останавливается и меняет направление движения.
Основные параметры двигателей
Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня (рис. 2).
Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Радиус кривошипа — расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки.
Ход поршня S — расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).
Рис. 2.
Основные положения кривошипно-шатунного механизма:
а — ВМТ; б — НМТ; Vc — объем камеры сгорания; Vh — рабочий объем цилиндра; D — диаметр цилиндра; S — ход поршня
Ход поршня S и диаметр D цилиндра обычно определяют размеры двигателя.
Такт — часть рабочего цикла, происходящая за один ход поршня.
Объем камеры сгорания — объем пространства над поршнем при его положении в ВМТ.
Рабочий объем цилиндра объем пространства, освобождаемого поршнем при перемещении его от ВМТ к НМТ.
Полный объем цилиндра — объем пространства над поршнем при нахождении его в НМТ. Очевидно, что полный объем цилиндра равен сумме рабочего объема цилиндра и объема камеры сгорания.
Степень сжатия ε — отношение полного объема цилиндра к объему камеры сгорания.
Индикаторная мощность Ni, мощность, развиваемая газами в цилиндре.
Эффективная (действительная) мощность Ne — мощность, развиваемая на коленчатом валу двигателя. Эффективная мощность Ne меньше индикаторной Ni, так как часть последней затрачивается на трение и на приведение в движение вспомогательных механизмов. Эта мощность называется мощностью механических потерь Nм.
Механический КПД (коэффициент полезного действия) двигателя ηм — отношение эффективной мощности к индикаторной:
Индикаторный КПД ηi, представляет собой отношение теплоты Qi эквивалентной индикаторной работе, ко всей теплоте Q, введенной в двигатель с топливом.
Эффективный КПД ηе — отношение количества теплоты Q2, превращенного в механическую работу на валу двигателя, ко всему количеству теплоты Q1, подведенному в процессе работы.
Среднее эффективное давление ре — произведение среднего индикаторного давления рi (давление, действующее на поршень в течение одного хода поршня) на механический КПД ηм.
Удельный индикаторный расход топлива qi — количество топлива, расходуемого в двигателе для получения в течение 1 ч индикаторной мощности 1 кВт.
Удельный эффективный расход топлива ge — количество топлива, которое расходуется в двигателе для получения в течение 1 ч 1 кВт эффективной мощности.
Понятия и определения принятые для поршневых двигателей
Основные определения, принятые для поршневых двигателей, указаны далее с использованием схемы одноцилиндрового двигателя.
Верхняя мертвая точка (в.м.т.) — положение поршня в цилиндре, при котором расстояние от него до оси коленчатого вала двигателя наибольшее.
Нижняя мертвая точка (н.м.т.) — положение поршня в цилиндре, при котором расстояние от него до оси коленчатого вала двигателя наименьшее.
Ход поршня S (м) — расстояние по оси цилиндра между мертвыми точками. При каждом ходе поршня коленчатый вал поворачивается на полоборота, т. е. на 180°. Ход поршня равен двум радиусам кривошипа коленчатого вала, т. е. S= 2r.
Рисунок. Схема одноцилиндрового четырёхтактного двигателя
Рабочий объем цилиндра Кл (м³) — объем цилиндра, освобождаемый поршнем при перемещении от в.м.т. до н.м.т.:
где d — диаметр цилиндра, м; S — ход поршня, м.
Объем камеры сжатия Vс, (м³) — объем пространства над поршнем, находящимся в в. м. т.
Полный объем цилиндра Vо (м ) — сумма объема камеры сжатия и рабочего объема цилиндра, т. е. пространство над поршнем, когда он находится в н. м. т.
Литраж двигателя Vд, — это сумма рабочих объемов всех его цилиндров, выраженная в литрах.
Степень сжатия — отношение полного объема цилиндра к объему камеры сжатия. Степень сжатия — это отвлеченное число, показывающее, во сколько раз полный объем цилиндра больше объема камеры сжатия.
Рабочий цикл двигателя — комплекс последовательных периодически повторяющихся процессов (впуск, сжатие, сгорание, расширение и выпуск), в результате которых энергия топлива преобразуется в механическую работу.
Такт — часть рабочего цикла, происходящая за время движения поршня от одной мертвой точки до другой, т. е. условно принимаем, что такт происходит за один ход поршня.
Двигатели, в которых рабочий цикл совершается за четыре хода (такта) поршня или за два оборота коленчатого вала, называют четырехтактными. Двигатели, в которых рабочий цикл совершается за два хода поршня или за один оборот коленчатого вала, считают двухтактными.
Общее уcтройство и характерные параметры поршневых двигателей
Поршневые двигатели внутреннего сгорания представляют собой комплекс механизмов и систем, обеспечивающий преобразование в механическую работу части тепловой энергии, выделяющейся при сгорании топлива непосредственно в цилиндрах.
Рис. Схема устройства типичного поршневого двигателя внутреннего сгорания:
а) продольный вид; б) поперечный вид
Схема типичного поршневого двигателя внутреннего сгорания показана на рисунке. В зависимости от назначения и класса таких двигателей их конструкции имеют различную сложность, но все они состоят из следующих основных деталей: цилиндра 5, крышки цилиндра 1, поршня 4 , шатуна 14, вала 8, маховика 7 и картера 6.
Цилиндр, его крышка, картер и различные вспомогательные корпусные и прочие неподвижные элементы конструкции двигателя прочно скрепляются между собой с помощью резьбовых соединений, а некоторые из них, как картер и цилиндры, в автомобильных двигателях часто отливаются совместно.
Цилиндр 5 с помощью фланца крепится к верхней половине картера 6 и закрывается крышкой 1, называемой головкой цилиндра.
Картер служит основанием для цилиндров, в нем также размещается вал 8 двигателя. Картер автомобильных двигателей изготовляется литым, чаще всего разъемным, состоящим из двух половин, стенки его усиливаются ребрами жесткости. Нижней, не несущей его частью является литой или штампованный поддон 9.
В цилиндр 5 вставлен поршень 4, имеющий форму стакана, с повернутым в сторону головки цилиндра днищем. При движении поршня стенки цилиндра служат для него направляющими. Уплотняется цилиндр поршневыми кольцами 2. В полости цилиндра, заключенной между днищем поршня и крышкой 7, происходят все основные и вспомогательные процессы, связанные с окислением (сжиганием) топлива и преобразованием части выделяющегося при этом тепла в механическую работу.
Перемещение поршня в цилиндре передается на вал 8 с помощью связующего их звена — шатуна 14, имеющего форму профильного стержня с двумя головками. Одна головка, соединяющая его стержень с шейкой 11 колена или кривошипа вала 8, называется большой, или нижней, головкой. Другая головка, через отверстие которой проходит поршневой палец 3, обеспечивающий необходимое шарнирное соединение шатуна с поршнем, называется малой или верхней головкой.
Длина шатуна определяется величиной l, равной расстоянию между осями его верхней и нижней головок. Для каждого цилиндра или группы их на валу 8 имеется отдельное колено, образованное цапфой 11 кривошипа, щеками 10 и опорными шейками 13, поэтому вал двигателя называют коленчатым.
Размер кривошипа (колена) определяется радиусом r, равным расстоянию между осью вращения коленчатого вала и осью цапфы кривошипа.
В двигателях с разъемным картером коленчатый вал вращается в опорных подшипниках 12, расположенных в верхней части картера 6. Эти подшипники и соответствующие им опорные шейки 13 коленчатого вала называют коренными. Цапфу 11 кривошипа, шарнирно связывающую вал 8 с нижней головкой шатуна 14, в двигателях автомобильного типа называют шатунной шейкой.
В судовых и стационарных двигателях цапфу кривошипа называют иногда мотылевой; коренные шейки 13 — рамовыми, а часть корпуса (остова), несущую коренные опоры, — рамой.
На коленчатом валу 8 крепится маховик 7, выполненный в виде литого диска с массивным ободом. Энергия маховика, накапливаемая им при вращении, расходуется на вспомогательные процессы в цилиндре двигателя. В одноцилиндровых двигателях кинетическая энергия маховика обеспечивает вывод кривошипно-шатунного механизма из мертвых (крайних) его положений.
Безразмерной характеристикой кривошипно-шатунного механизма считают отношение радиуса r кривошипа к длине l шатуна. В поршневых двигателях внутреннего сгорания это отношение определяется из условий незадевания шатуна за стенку цилиндра и поршня о коренные подшипники при внешнем крайнем его положении.
В двигателе с кривошипно-шатунным механизмом возвратнопоступательное движение поршня вдоль оси цилиндра вызывает вращательное движение коленчатого вала около своей продольной оси, расположенной перпендикулярно коси цилиндра. И, наоборот, вращение коленчатого вала вызывает соответствующее перемещение поршня в цилиндре.
Для двигателя, схематично изображенного на рисунке, наибольшее перемещение поршня или его ход равен удвоенному радиусу кривошипа:
Следовательно, ход поршня — это расстояние между двумя крайними его положениями в цилиндре, занимаемыми им последовательно при каждом полуобороте вала двигателя (через каждые 180° поворота). Положение поршня, при котором он максимально удален от оси коленчатого вала, условно называется внутренней или верхней мертвой точкой (сокращенно в.м.т.), а положение, при котором поршень находится на минимальном расстоянии от оси вала, называется наружной или нижней мертвой точкой (н.м.т.).
Необходимо отметить, что мертвые точки присущи механизму и соответствуют таким двум положениям кривошипа (или колена), при которых шатун и кривошип вытянуты в одну линию, как это имеет место в рассматриваемом соосном механизме (ось цилиндра в котором пересекается с осью коленчатого вала). В общем случае мертвыми точками называют такие положения, при которых поршень меняет направление своего движения, и скорость его перемещения становится равной нулю.
Ход поршня S и диаметр цилиндра D относятся к главным оценочным параметрам двигателя, определяющим основные его размеры. В поршневых двигателях отношение хода поршня к диаметру цилиндра S/D изменяется примерно в пределах от 0,7 до 2,2. Если двигатель имеет S/D
Пламенное сердце машины, часть 3
Двигатель. Вибрации и уравновешенность. Конфигурация цилиндров.
Текст: Артем ‘S1LvER’ Терехов
У каждого мотоциклетного двигателя есть ряд вращающихся деталей. А есть еще и такие, которые движутся возвратно-поступательно (только в роторном двигателе таких деталей нет). Вот они-то в основном и являются «возмутителями спокойствия», задорно раскачивая моторчик на разные лады.
Возьмем, например, маховик. Этот большой парень свободно вращается на своих подшипниках и не создает вообще никаких вибраций. Но к вращению маховика добавляются движения других вращающихся элементов: палец кривошипа, нижняя часть шатуна, подшипник нижней головки шатуна. И уже эта сумма (а не отдельные элементы общей «вращающейся картины») создает проблему вибрации, вызванную разбалансировкой вращающихся или центробежных сил.
С возвратно-поступательными движениями деталей тоже все отнюдь не просто: верхняя половина шатуна и поршень движутся именно так. Объяснить, откуда берутся вибрации в этом случае непросто, но я постараюсь. Как только поршень достигает вершины своего хода (верхней мертвой точки, ВМТ), он должен резко замедлиться и практически мгновенно остановиться, после чего ускориться в обратном направлении. Безумный поршень достигает своей максимальной скорости где-то в середине хода, после чего снова следует резкое замедление, «оттормаживание» в нижней мертвой точке (НМТ), после чего опять происходит ускорение при движении вверх. Снова, снова и снова. Каждая остановка в ВМТ и НМТ вызывает импульс вибрации, которая расходится по всему двигателю. Физические силы, которые вызывают вибрацию, называют инерционными или возвратно-поступательными, они равны нулю в середине хода поршня и максимальны в ВМТ и НМТ.
Поршни маленького Ninja 250R порхают со скоростью 15,11 метров в секунду!
Со всеми этими проблемами нужно как-то бороться, потому что ездить на брыкающемся и вздрагивающем всем телом байке просто невозможно.
Решение проблем
Устранить вредное влияние вращающих сил довольно просто: надо удалить часть материала с маховика рядом с пальцем кривошипа или прибавить такое же количество материала напротив него, и конструкция снова сбалансирована. Для компенсации возвратно-поступательных сил можно продолжать увеличивать массу маховиков с противоположной пальцу кривошипа стороны так, чтобы был сбалансирован общий вес узлов, перемещающихся возвратно-поступательно. Таким способом исключается неуравновешенность в ВМТ и НМТ хода поршня. Проблема вибрации решена!
А вот и нет. Такой подход не работает в промежутке хода поршня между ВМТ и НМТ, потому что добавленная масса на маховиках создает постоянную крутящую силу, в то время как возвратно-поступательно движущаяся сила (да, от этих поршней одни проблемы) изменяется от максимума до нуля и наоборот. В итоге получается горизонтальная вибрация. И хотя масса вращающихся частей коленвала постоянна (если только он еще не рассыпается от вибраций, которыми мы с вами, как заправские инженеры, его наградили), часть этой массы постоянно изменяет свое положение, изменяя таким образом крутящие силы. Процесс вращения коленвала и действие сил, которые при этом возникают, частично показан в ролике о принципе работы крестообразного коленвала Yamaha R1 2009, советую посмотреть для лучшего понимания того, что я тут понаписал (начиная с 2.30 минут ).
Проблема уравновешивания двигателя с математической точки зрения очень сложна. Существующие методы представляют собой компромисс по сравнению с идеальной ситуацией. Исходя из этого, становится понятно, зачем конструкторы испробовали огромное количество различных схем двигателя и коленвала: чтобы исследовать и попытаться устранить присущие им проблемы вибрации и уравновешенности.
Думаю, вы уже догадались, что задача усложняется с увеленичем размеров двигателя. На 50-кубовом скутере вибрация проявляется лишь в мелкой дрожи на руле, совершенно не напрягающей. Проблема вибрации ограничивает объем одноцилиндровых двигателей – 650 кубических сантиметров. Спортивные одностволки-эндуро такого объема от KTM не зря называют «молотилками» — вибрации на руле настолько сильны, что можно закрыть глаза и представить себя на дорожных работах с отбойным молотком в руках. Большая мощность означает увеличение частоты вращения элементов двигателя, так что возникает потребность в увеличении количества цилиндров.
Подавление вибраций
Есть несколько способов снижения вибрации, которые избавляют разработчиков от трудной необходимости устранения самой причины. Конструкция рамы играет огромную роль: грамотно спроектированная, она снижает уровень вибраций. Еще можно закрепить двигатель в раме с помощью резиновых втулок, которые выполняют виброизоляционную роль. Рукоятки руля утяжеляют: это приводит к изменению резонансной частоты руля, что уменьшает «дрожь». Подобный метод применяется и в случае с зеркалами заднего вида. Явный аутсайдер в этом вопросе – Hyosung GT250R, заводские зеркала которого часто лопаются вследствие непродуманной конструкции.
Невозможно устранить силы служащие источником затруднений. Однако возможно создать равные им, но противоположно направленные силы для устранения уже существующих. Для этого используется один или несколько уравновешивающих валов (которые часто называют балансирными) с приводом от коленвала, которые вращаются в противоположном ему направлении. На валу размещают противовесы, масса и расположение которых тщательно рассчитывается. Такой подход оптимален в случаях, когда мощность и вес значат меньше, чем удобство и комфортабельность, либо когда прочие способы уже задействованы, но не принесли желаемого эффекта. В результате, балансирный вал можно встретить и в двигателях супербайков (например, Suzuki GSX-R1000 2009), и в моторах больших туреров вроде BMW R1200RT.
В поисках мощности – диаметр и ход поршня
Соотношение диаметра и хода поршня – это основной фактор того, как будет получена мощность от двигателя. Схема, в которой диаметр поршня равен его ходу, называется «квадратной». Если увеличить ход и уменьшить диаметр, то полученная схема будет называться «длинноходной». Обратные действия приведут к созданию «короткоходной» схемы.
Двухлитровый V-twin от Kawasaki VN2000. Ход поршня значительно превышает диаметр цилиндра
Длинноходный двигатель отличается пологой характеристикой крутящего момента в широком диапазоне частот вращения двигателя. Крутящий момент является следствием достаточно большого плеча рычага, на котором прилагается усилие от длинного шатуна. Именно это позволяет длинноходному двигателю развивать хорошую тягу при низкой частоте вращения коленвала. Наглядный пример длинноходной схемы – большеобъемные крузеры с V-образным двигателем. Двухлитровый V-twin от Kawasaki VN2000. Ход поршня значительно превышает диаметр цилиндра
Suzuki_GSX-R_1000 73,4 x 59 мм. Короткоходная конфигурация — идеальный вариант для спортбайка
Короткоходный двигатель может работать при более высоких скоростях вращения, чем длинноходный того же объема. Следовательно, за определенный промежуток времени происходит большее количество рабочих ходов (т.е. повышается мощность). Недостаток заключается в уменьшении плеча рычага коленвала, что приводит к менее пологой характеристике крутящего момента. Короктоходные двигатели более мощные, но в узком диапазоне частот вращения двигателя. Думаю, не стоит объяснять, что спортбайки принадлежат именно к короткоходному «племени» байков.
На деле многие современные мотоциклетные двигатели близки к квадратной схеме, с небольшими отклонениями в ту или иную сторону (в зависимости от предъявляемых требований к использованию мотоцикла).
Конфигурации цилиндров
Немного разобравшись в теории, давайте посмотрим на различные схемы расположения цилиндров. Зная общие принципы, мы уже сможем делать самостоятельные выводы о достоинствах и недостатках конкретных конфигураций.
-
Одноцилиндровый двигатель. Основные достоинства такой схемы – простота и небольшие габариты. «Одностволка» проста в производстве и ремонте, а также имеет малый вес. Преимущественно, применяется на мопедах, скутерах и внедорожных байках. Яркий пример – кроссовые байки с объемом двигателя 250 и 450 кубических сантиметров. С технической точки зрения, одноцилиндровики обладают несколькими недостатками:
— необходимость в больших маховиках для поддержания вращения двигателя до его следующего рабочего хода (немного подумайте, и вы поймете, что воспламенение смеси в 1-цилиндровом 4Т-двигателе происходит один раз за два оборота коленвала);
— чтобы избежать чрезмерного «ожирения» всей конструкции, поршень максимально облегчают, а это не лучшим образом сказывается на долговечности.
Honda CRF450R 2009, 1 цилиндр, 4 такта. Kick me!
- Двухцилиндровый рядный двигатель. По сути, это одноцилиндровый двигатель, измененный таким образом, чтобы вместить два цилиндра, поршня и шатуна. В традиционной британской конструкции поршни перемещаются вверх и вниз одновременно, но вспышки в цилиндрах чередуются с интервалом в 360 градусов (т.е. через один оборот коленвала). «Толчок» рабочего хода, присущий одноцилиндровикам, здесь сглаживается за счет двух меньших импульсов, равномерно распределнных в пределах двух оборотов коленвала. Есть также варианты с интервалом вспышек каждые 180 и 270 градусов. В последнем случае мотор по своему характеру становится похож на V-образную двойку.
Triumph Thruxton 2008, 2 цилиндра в ряд, чередование вспышек через 360 градусов
Yamaha TDM900 2008, 2 цилиндра в ряд, чередование вспышек через 270 градусов
- Двухцилиндровый V-образный двигатель. По убеждению многих, лучшая моторная схема для мотоцикла. С этим можно поспорить, однако в пользу утверждения говорит тот факт, что возраст идеи использования V-твина сравним с возрастом самой идеи мотоцикла. Плохие идеи столько не живут. С точки зрения уравновешивания, лучший угол развала цилиндров — 90 градусов. Если поступательно движущиеся массы поршней и шатунов полностью сбалансированы, то неуравновешенные силы одного цилиндра неизбежно уравновешиваются противодействующими силами в середине хода другого. Ducati использует конструкцию двигателя с 90-градусным развалом цилиндров на всех своих мотоциклах, только называют итальянцы такой двигатель L-twin. Это связано с тем, что верхний цилиндр расположен вертикально, а нижний – горизонтально. Раньше это делалось для лучшего охлаждения обоих цилиндров встречным потоком воздуха, однако с применением воздушно-масляного и жидкостного охлаждения схема стала просто визитной карточкой Ducati – сбалансированной и очень удачной с инженерной точки зрения. Вариантов угла наклона, равно как и расположения цилиндров — великое множество. Практически у каждого производителя есть «фирменный» подход к построению V-твина. Наиболее интересные – все та же Ducati, Moto Guzzi с их поперечным расположением цилиндров, Harley-Davidson с уникальным звуком, обусловленным неравномерным интервалом между вспышками.
Благодаря внушительному виду двигатели V-twin очень популярны у кастомайзеров во всем мире
- Трехцилиндровый рядный двигатель. Представляет собой компромисс между проблемами вибрации 2-цилиндрового и шириной 4-цилиндрового двигателей. Из современных производителей верными такой схеме остались только парни из Triumph, большая часть их модельного ряда состоит именно из «триплов».С точки зрения мощности, «тройник» представляет собой превосходный промежуточный вариант между низкооборотистыми 2-цилиндровыми и 4-цилиндровыми рядниками с их запредельной мощностью.
Triumph Street Triple 2008, трехцилиндровая инженерная гармония
- Четырехцилиндровый рядный двигатель. Первой серийной ласточкой стала Honda CB750 Four 1969 года. Этот байк на многие годы вперед утвердил основную конструкцию двигателей среднего и большого объемов. В такой схеме нет ничего нового – производители автомобилей еще раньше выбрали ее за лучшее сочетание компактности и уравновешенности. Просто у Хонды в 60-х годах в закромах завалялась пара компактных 4-цилиндровых рядников для спорткаров, которые впоследствии были адаптированы для мотоциклов.
Yamaha YZF-R1 2004, классическая рядная четверка
По сути, «четверка» представляет собой два двухцилиндровых двигателя, объединенных между собой со смещением шатунных шеек коленвалов на 180 градусов. Рабочие хода происходят достаточно часто, один за каждый полуоборот коленвала. Следовательно, потребность в больших маховиках для поддержания движения отпадает. За счет хорошей уравновешенности коленвала и относительно небольшого диаметра маховиков 4-цилиндровый двигатель обладает небольшим ходом поршня, поэтому его легко «раскручивать». Что и получило одобрение в рядах отягощенных адреналином потребителей. Проблемы с вибрацией, если таковые есть, решаются грамотной конструкцией рамы, опор двигателя и всех окружающих двигатель узлов. Примеров использования рядной четверки огромное количество, в основном – среди японских производителей. Хотя компания BMW также использует его в своих мотоциклах. Причем баварцы наклоняют цилиндры вперед, что понижает центр тяжести и положительно сказывается на управляемости байка.
BMW K1200R 2008, обратите внимание на сильный наклон цилиндров вперед
- Четырехцилиндровый V-образный двигатель. По сути, представляет собой сдвоенный двухцилиндровый V-образник. Поэтому все замечания, относящиеся к V-твину, могут быть применены и в данном случае. Оптимальный угол развала составляет все те же 90 градусов. V4 очень дороги в производстве и сложны в обслуживании, что не помешало им прославиться благодаря широкому применению в модельном ряде VFR компании Honda. Наиболее совершенным двигателем такой конструкции считается установленный в Honda NR750, которая была выпущена в ограниченном количестве. Отличительные особенности моторчика NR750 – 8 клапанов на цилиндр и овальная форма поршней. Хотя новый VFR1200F вполне может побороться за почетное звание «самый совершенный V4». Еще один достойный пример применения схемы V4 – Ducati Desmosedici RR.
Двигатель Honda VFR1200F 2010
- Оппозитный двигатель. Двухцилиндровый оппозит предлагает практически идеальное решение задачи уравновешивания. Одновременное перемещение поршней в противоположных направлениях компенсируют друг друга. Уровень возникающих вибраций при этом минимальный. Мотор такого типа широко используется компанией BMW в мотоциклах самого различного назначения. Венцом эволюции Boxer-а (как иногда называют 2-цилиндровый оппозит) стала модель HP2 Sport. Однако по динамическим показателям оппозит слишком далек от своих 4-цилиндровых рядных конкурентов.
BMW HP2 Sport 2008, вершина эволюции оппозита
По аналогии с рядными двигателями, точно так же двухцилиндровый оппозитник превратился в четырехцилиндровый. Единственный мотоцикл, где применяется такой движок – это Honda Gold Wing с двигателем объемом 1000, 1100 и 1200 куб. см (по мере эволюции модели). Отсутствие вибраций, отличная управляемость за счет низкого центра тяжести – козыри те же, что и в случае с 2-цилиндровым собратом. На самую новую версию Gold Wing’а устанавливается шестицилиндровый оппозитный двигатель объемом 1800 куб. см – единственный представитель такой компоновки среди серийных мотоциклов (так же, как и его 4-цилиндровый предшественник был единственным в свое время).
При всех своих достоинствах, оппозитный двигатель с любым количеством цилиндров обладает одним очень серьезным недостатком. И этот недостаток – чрезмерная ширина, которая является постоянной проблемой для мотоциклетных конструкторов и ограничивает круг применения данной схемы круизерами и туристами. BMW HP2 Sport наиболее ярко продемонстрировал, насколько велики габаритные недостатки Boxer’а.
Мы с вами рассмотрели все схемы двигателей, которые применяются на современных серийных мотоциклах. За бортом осталась такая экзотика, как шестицилиндровые рядники и V-образники с нечетным количеством цилиндров. Мотоциклы, использующие такие моторные схемы, давно стали коллекционной диковинкой (а некоторые изначально являлись спортивными прототипами, получить доступ к двигателям которых могут лишь гоночные механики и инженеры), а посему представляют для нас чисто академический интерес. Если хотите кое-чего запредельного, наберите в поиске youtube “y2k”. Думаю, результат вас удивит…
Общее устройство двигателя внутреннего сгорания (ДВС) автомобиля
В статье будет описано устройство двигателя внутреннего сгорания, технические характеристики ДВС и принцип действия его основных систем. Не останется без внимания и устройство системы питания двигателя на уровне базовых знаний автомехаников дилерских автоцентров, но немного истории о создании двигателя.
Первый двигатель внутреннего сгорания, который мог составить конкуренцию паровым машинам, пытались создать с начала 19-го века французские инженеры Филипп Лебон и Жан Этьен Ленуар, но только в 1864 году немецкий изобретатель Николаус Отто запатентовал свою модель ДВС, работающего на газу.
С тех пор конструкция двигателя постоянно совершенствовалась, и было разработано много видов ДВС, но автомобили, приводимые в движение двигателями внутреннего сгорания, появились только в 1886 году, когда немец Карл Бенц запатентовал свой первый автомобиль с названием Motorwagen.
Как устроен ДВС: характеристики и классификация
Двигатели внутреннего сгорания с возвратно-поступательным движением стали основными для использования в различных моделях автомобилей и совершили прорыв в развитии автомобильной промышленности.
Постоянное усовершенствование старых систем ДВС и добавление новых привело к созданию большой линейки моделей силовых агрегатов, которые стали применяться не только в автомобилях.
В зависимости от вида транспортного средства используются ДВС различной конструкции, поэтому, чтобы понимать устройство двигателя внутреннего сгорания автомобиля, необходимо знать их классификацию и отличия в системах.
Классификация ДВС
В зависимости от устройства виды ДВС автомобилей классифицируются по следующим признакам: по способу осуществления рабочего цикла – четырехтактные двигатели и двухтактные.
По характеру движения рабочих частей: ДВС с возвратно-поступательным движением поршней и роторно-поршневые (двигатели Ванкеля).
По расположению цилиндров: рядные, оппозитные, V-образные и звездообразные двигатели.
По способу смесеобразования: с внешним смесеобразованием (вне камеры сгорания); с внутренним смесеобразованием (в камере сгорания).
По способу воспламенения горючей смеси: бензиновые ДВС с принудительным воспламенением и дизельные с воспламенением от сжатия.
По типу системы охлаждения: с жидкостным охлаждением и ДВС с воздушным охлаждением.
По типу топлива: бензиновый двигатель; дизельный ДВС; двигатель, работающий на газе.
По расположению распредвала(-ов): с верхним расположением распредвала(-ов) и с нижним расположением распредвала(-ов).
По способу наполнения цилиндров: двигатели без наддува («атмосферные») и двигатели с наддувом.
Устройство роторного двигателя (двигатель Ванкеля)
В устройство роторно-поршневого двигателя (РПД) Ванкеля входят нескольких роторов, которые расположены друг за другом. Роторы имеют специальную треугольную форму и вращаются в овальной полости. Описывающая полость кривая называется эпитрохоидой.
Рабочая полость смещается вместе с ротором вдоль стенки корпуса. За один оборот вала совершается один рабочий цикл четырехтактного ДВС. Реализована щелевая схема газообмена, применяемая на 2-х тактных ДВС внутреннего сгорания. Воспламенение топливо-воздушной смеси происходит принудительно от свечи зажигания.
При меньших геометрических размерах мощностные характеристики РПД значительно выше, чем у ДВС, за счет меньшей инерционной массы и количества движущихся деталей. Применение роторно-поршневых двигателей ограничено высокой стоимостью изготовления, ремонта, расхода топлива и меньшего моторесурса, по сравнению с ДВС.
Четырехтактный бензиновый двигатель
Четырехтактный бензиновый двигатель состоит из трех основных блоков: блок цилиндров; головка блока цилиндров; кривошипно-шатунный механизм. Возвратно-поступательное движение поршней кривошипно-шатунного механизма обеспечивает наполнение камеры сгорания топливо-воздушной смесью, сжатием и принудительным воспламенением.
В процессе сгорания топлива, выделяемая тепловая энергия преобразуется в механическую за счет увеличения давления в камере сгорания, которое заставляет поршень перемещаться и приводить в движение кривошипно-шатунный механизм. Рабочий цикл двигателя внутреннего сгорания состоит из четырех тактов: впуск; сжатие; рабочий ход; выпуск.
- Впуск – при перемещении поршня из верхней мертвой точки в нижнюю мертвую точку в цилиндре создается разряжение, за счет которого происходит его наполнение топливно-воздушной смесью через открытый впускной клапан. Впускной клапан открывается раньше нахождения поршня в верхней мертвой точке (ВМТ) и закрывается позже, после прохождения поршнем нижнюю мертвую точку (НМТ) для улучшения наполнения цилиндра топливо-воздушной смесью.
- Сжатие – при перемещении из НМТ в ВМТ, когда оба клапана закрыты, происходит сжатие, при котором топливо-воздушная смесь нагревается, и распыленное топливо принимает газообразное состояние.
- Рабочий ход – сжатая топливовоздушная смесь воспламеняется искрой от свечи зажигания. В процессе сгорания освобождающаяся теплота повышает давление в цилиндре, под действием которого поршень перемещается вниз.
- Выпуск – перед НМТ открывается выпускной клапан и отработавшие газы, под действием остаточного давления, выходят из цилиндра. При дальнейшем перемещении поршня из НМТ в ВМТ через открытый выпускной клапан происходит вытеснение остаточных выхлопных газов. Рабочий цикл завершается.
При вытеснении отработавших газов и наполнения цилиндра топливовоздушной смесью, чтобы улучшить газообмен, выпускной клапан закрывается за ВМТ, одновременно впускной открывается до ВМТ. Такое положение клапанов, когда они оба открыты, называют перекрытием клапанов.
В системах непосредственного впрыска топлива, в бензиновых ДВС в фазе впуска в цилиндры, поступает воздух, а топливо впрыскивается непосредственно в камеру сгорания во время такта впуска или сжатия, в зависимости от режима работы ДВС.
Четырехтактный дизельный двигатель
Принцип работы и основные блоки четырехтактного дизельного двигателя аналогичны бензиновому ДВС. Разница заключается в том, что образование топливно-воздушной смеси осуществляется непосредственно в камере сгорания, а воспламенение смеси происходит из-за нагрева при сжатии.
За счет меньшей температуры горения дизельного топлива, и соответственно тепловыделения, КПД дизельного ДВС автомобиля выше, чем у бензинового. Рабочий цикл дизельного ДВС внутреннего сгорания состоит из 4-х тактов: впуск; сжатие; рабочий ход; выпуск.
- Впуск – при перемещении поршня из верхней мертвой точки в нижнюю мертвую точку в цилиндре создается разряжение, за счет которого происходит его наполнение воздухом через открытый впускной клапан. Впускной клапан открывается раньше нахождения поршня в верхней мертвой точке (ВМТ) и закрывается позже, после прохождения поршнем нижнюю мертвую точку (НМТ) для улучшения наполнения цилиндра двигателя топливо-воздушной смесью.
- Сжатие – при перемещении из НМТ в ВМТ, когда оба клапана закрыты, происходит сжатие, при котором в конце такта сжатия форсунка впрыскивает в нагретый воздух топливо под высоким давлением.
- Рабочий ход – с небольшим запаздыванием топливо воспламеняется, в процессе сгорания освобождающаяся теплота повышает давление в цилиндре, под действием которого поршень перемещается вниз.
- Выпуск – перед НМТ открывается выпускной клапан и отработавшие газы, под действием остаточного давления, выходят из цилиндра. При дальнейшем перемещении поршня из НМТ в ВМТ через открытый выпускной клапан происходит вытеснение остаточных выхлопных газов. Рабочий цикл завершается.
При вытеснении отработавших газов и наполнения цилиндра воздухом, чтобы улучшить газообмен, выпускной клапан закрывается за ВМТ, одновременно впускной открывается до ВМТ. Такое положение клапанов, когда они оба открыты, называют перекрытием клапанов.
Кривошипно-шатунный механизм
Назначение кривошипно-шатунного механизма – преобразовывать возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Кривошипно-шатунный механизм состоит из следующих частей: поршень; шатун; коленчатый вал; шатунный механизм.
Кривошипно-шатунный механизм установлен в блоке ДВС и крепится на коренных подшипниках (коренных вкладышах).
Нумерация цилиндров и направление вращения
Цилиндры нумеруются по единому стандарту. Первый цилиндр находится, со стороны, противоположной стороне, к которой пристыковывается коробка передач. Исключением являются двигатели французского производства.
Нумерация цилиндров V-образных двигателей начинается с правого полублока, если смотреть со стороны, к которой подсоединяется коробка передач.
Существуют двигатели внутреннего сгорания с правым и левым направлением вращения коленчатого вала, если смотреть с передней части ДВС.
На рисунке изображены двигатели с правым направлением вращения. Распространение получили двигатели с правым направлением вращения.
Техническая характеристика двигателя
К основным механическим характеристикам двигателя можно отнести: диаметр цилиндра и ход поршня; рабочий объем; объем камеры сгорания; полный объем цилиндра; степень сжатия.
Диаметр цилиндра – это диаметр отверстия в блоке под поршень. Ход поршня – это расстояние, которое проходит поршень между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ).
Рабочий объем – это объем цилиндра между ВМТ и НМТ поршня. Рабочий объем (Vh) равен произведению площади поперечного сечения цилиндра (A) на ход поршня (h): V h = A x h В зависимости от того, больше или меньше диаметр цилиндра и ход поршня, различают длинноходные и короткоходные ДВС.
Объем камеры сгорания (Vc) – это объем полости над ВМТ поршня. При перемещении поршня в ВМТ в конце такта сжатия еще невоспламенившаяся топливо-воздушная смесь имеет максимальную плотность.
Полный объем цилиндра (VH) равен сумме рабочего объема (Vh) и объема камеры сгорания (Vc): V H = V h + V c.
Степень сжатия – это отношение полного объема цилиндра (рабочий объем Vh + объем камеры сгорания Vc) к объему камеры сгорания Vc. Величина степени сжатия определяется математически.
Степень сжатия оказывает влияние на характеристики холодного пуска, развиваемый крутящий момент, расход топлива, шумность и токсичность отработавших газов.
В зависимости от конструкции ДВС и типа смесеобразования степень сжатия может составлять: для бензиновых двигателей: 7:1 … 13:1; для дизельных двигателей: 16:1 … 24:1.
Чем выше степень сжатия, тем эффективнее используется энергия сгорания топлива и, соответственно, выше КПД. Факторы, влияющие на ограничение степени сжатия:
- Бензиновый двигатель – так как с увеличением степени сжатия растет температура, в конце такта сжатия топливо может самовоспламениться. Самовоспламенение проявляется в виде детонационных стуков. Увеличение степени сжатия ограничивается качеством (октановым числом) применяемого топлива.
- Дизельный двигатель – степень сжатия ограничена определенными величинами. При превышении порогового значения прекращается рост мощности и растет вероятность повреждений двигателя, например: может быть превышено максимально допустимое давление на головку блока цилиндров, а механическая перегрузка может привести к повреждениям кривошипно-шатунного механизма.
Форма камеры сгорания бензинового двигателя
Форма камеры сгорания оказывает значительное влияние на процесс сгорания, она должна обеспечивать быстрое и эффективное наполнение, а также надлежащую турбулентность топливо-воздушной смеси.
Камера сгорания должна быть компактной – это обуславливает короткий путь фронта пламени и обеспечивает быстрое удаление отработавших газов.
В современных бензиновых ДВС с 4 клапанами на цилиндр наибольшее распространение получили камеры сгорания шатрового типа.
Малый размер верхней части шатровой камеры сгорания уменьшает потери теплоты. От размеров камеры сгорания зависит степень сжатия. Установка двух впускных и двух выпускных клапанов обеспечивает большие суммарные проходные сечения впускных и выпускных каналов, что обуславливает хороший газообмен.
Форма камеры сгорания дизельного двигателя
Форма камеры сгорания дизельного двигателя зависит от способа организации рабочего процесса при впрыске.
У дизельных ДВС с разделенными камерами сгорания значительную часть камеры сгорания составляет предкамера или вихревая камера.
У дизельных ДВС с неразделенными камерами сгорания (дизели с непосредственным впрыском топлива) большая часть камеры сгорания находится в выполненном в поршне углублении.
Обороты, крутящий момент и мощность ДВС
Возвратно-поступательное движение поршня преобразуется во вращательное движение коленчатого вала с помощью кривошипно-шатунного механизма. Число оборотов коленчатого вала в минуту называется числом оборотов ДВС.
Крутящий момент можно развить, приложив некоторую силу (F) на плече рычага (l) (крутящий момент = сила х плечо), то есть: M = F x l.
Крутящий момент увеличивается при увеличении прилагаемой силы и при увеличении длины плеча, измеряется в Нм.
Развиваемая мощность ДВС пропорциональна его крутящему моменту (M) и числу оборотов (n), она определяется как произведение (P) = крутящего момента (M) на число оборотов (n)/9550.
При использовании этой формулы вычисляемая мощность будет получена в кВт (согласно нормам ЕС). Значение в лошадиных силах обычно указывается в скобках.
Внешние скоростные характеристики двигателя
Внешние скоростные характеристики содержат информацию об изменении мощности и крутящего момента, в зависимости от оборотов. Эти графики получаются при испытании ДВС на стенде.
Бензиновые ДВС характеризуются большей мощностью, чем дизельные, несмотря на то, что крутящий момент несколько ниже. Большая мощность достигается путем увеличения частоты вращения.
Дизельные двигатели внутреннего сгорания характеризуются высоким крутящим моментом на низких оборотах, это достигается за счет высокого давления при сгорании.
По сравнению с бензиновыми, дизельные двигатели имеют меньшую мощность, так как работают на более низких оборотах.
В таблице показаны различия бензинового и дизельного двигателей в разных тактах рабочего цикла.
Характеристики двигателя
Такты рабочего цикла | Бензиновый двигатель | Дизельный двигатель |
---|---|---|
Впуск | Топливо-воздушная смесь, количество в зависимости от требуемой мощности | Воздух, количество не зависит от мощности |
Сжатие | Топливо-воздушная смесь, степень сжатия 7 – 12 | Воздух, степень сжатия 14 – 24, в конце такта сжатия происходит впрыск топлива |
Давление сжатия: до 18 бар | Давление сжатия: 30 – 55 бар | |
Нагрев топливо-воздушной смеси: 400 – 500 °C | Нагрев воздуха: 600 – 900 °C | |
Сгорание (рабочий ход) |
Воспламенение от искры (принудительное воспламенение) |
Самовоспламенение впрыснутого топлива за счет высокой температуры |
Максимальное давление: 30 – 60 бар | Максимальное давление:160 бар | |
Температура в камере сгорания 2000 – 2500 °C | Температура в камере сгорания 1400 – 2000 °C | |
Выпуск | Температура отработавших газов: 900 °C на холостом ходу; 700 – 1000 °C при полной нагрузке | Температура отработавших газов: 250 °C на холостом ходу; 550 – 750 °C при полной нагрузке |
Общее устройство двигателя
Чтобы знать, как устроен двигатель автомобиля, необходимо изучить узлы и системы ДВС. Общее устройство двигателя состоит из трех основных узлов: головки блока цилиндров, блока цилиндров и кривошипно-шатунного механизма.
Работу ДВС обеспечивают системы: зажигания (бензиновые двигатели), питания, охлаждения, смазки, газораспределения, снижения токсичности и турбонаддува.
Управление работой ДВС, на основании сигналов датчиков, осуществляет электронный блок управления (ЭБУ), в английском варианте – PCM (Powertrain control module).
Головка блока цилиндров (ГБЦ)
Головка блока цилиндров обеспечивает герметизацию цилиндров сверху. ГБЦ образует камеры сгорания. В ГБЦ устанавливаются свечи зажигания (бензиновые ДВС) или форсунки (дизельные ДВС). В ГБЦ размещены впускные и выпускные каналы, клапаны и другие элементы клапанного механизма.
Из-за контакта с раскаленными газами ГБЦ испытывает термические напряжения и, в зависимости от типа системы охлаждения, ГБЦ выполнены с оребрением (для воздушного охлаждения) или с каналами для протока охлаждающей жидкости (ОЖ).
ГБЦ изготавливают из термостойкого серого чугуна или из легких сплавов, которые обладают хорошей теплопроводностью.
Прокладка головки блока цилиндров
Прокладка обеспечивает газо-водонепроницаемое соединение между головкой блока цилиндров и блоком цилиндров, кроме того, прокладка компенсирует незначительные неровности привалочных плоскостей, поэтому она изготавливается из мягких материалов.
Для компенсации допусков при изготовлении или выступания поршней для определенных вариантов ДВС (дизельных), доступны прокладки головок блока цилиндров разной толщины. Чтобы отличить такие прокладки друг от друга, на них наносят метки (отверстия, пазы и т.д.).
Применяются прокладки ГБЦ следующей конструкции: несущая металлическая пластина с накладками из мягкого материала, мягкий материал, армированный металлом, металлическая сетка с накладками из мягкого материала, полностью металлическая прокладка.
Болты головки блока цилиндров
Болты крепления головки блока цилиндров предназначены для надежного соединения ГБЦ, прокладки ГБЦ и блока цилиндров. Порядок затяжки болтов указан в руководствах по ремонту и его следует обязательно придерживаться.
Затяжка болтов обязательно производится динамометрическим ключом в несколько этапов.
При затяжке, предусматривающей нагружение болтов до текучести, на последнем этапе используется ключ для поворота болтов на определенный угол.
Распределительный вал
Распредвал (или распредвалы в ГБЦ, имеющих более 2 клапанов на цилиндр) приводит/приводят клапаны. Распредвал (-ы) приводится (-ятся) от коленчатого вала. Его (их) частота вращения равна половине частоты вращения коленчатого вала.
Моменты открытия или закрытия клапанов определяются положением распредвала (-ов). Привод распредвала (-ов) осуществляется зубчатыми колесами, цепями или зубчатыми ремнями.
ДВС с двумя клапанами на цилиндр, в большинстве случаев, имеют по одному распредвалу на ряд цилиндров.
В ДВС с головками, имеющими более 2 клапанов на цилиндр, клапана сгруппированы в два ряда и установлены два распредвала. Распределительные валы изготавливаются из ковкой стали или из ковкого чугуна, или из чугуна с шаровидным графитом.
Форма кулачков
Форма кулачка (профиль) определяет время открытия клапана, его ход и характеристики процесса перемещения клапана при открытии и закрытии. Кулачок с заостренным профилем открывает и закрывает клапан медленно. при этом время полного открытия клапана относительно невелико.
Кулачок с резким подъемом профиля открывает и закрывает клапан быстрее и больше удерживает его в полностью открытом состоянии. Кулачки с резким подъемом профиля способствуют хорошему газообмену. Они подвержены более сильным нагрузкам по сравнению с кулачками с заостренным профилем.
Часто кулачки имеют асимметричную форму. У таких кулачков часть профиля, определяющая открытие клапана, имеет плоскую форму (для медленного открытия клапана), а часть профиля, определяющая закрытие клапана, имеет резкий подъем (для более продолжительного полного открытия и быстрого закрытия клапана).
Клапана ДВС: назначение и конструкция
Назначение клапанов открывать впускные и выпускные каналы во время газообмена и закрывать их во время тактов сжатия и расширения (рабочего хода). При этом клапаны подвергаются высоким термическим нагрузкам, несмотря на то, что впускной клапан охлаждается поступающим в цилиндр воздухом (или топливо-воздушной смесью), он нагревается до 500°C.
В связи с тем, что выпускной клапан омывается раскаленными газами из камеры сгорания, он нагревается до 800 °C (тарелка клапана). Тарелка выпускного клапана в обычно имеет меньший диаметр, чем у впускного.
Это объясняется тем, что отработавшие газы под давлением легко выходят из камеры сгорания даже при меньшем, по сравнению со впускным, проходном сечении.
Клапан состоит из тарелки и штока. Тарелка, прилегая к седлу в головке блока цилиндров, создает газонепроницаемое соединение и закрывает камеру сгорания. На конце штока клапана могут быть выполнены специальные отверстия, одна или несколько кольцевых проточек, предназначенных для фиксации сухарей.
Под действием усилия, передаваемого от тарелки пружины клапана, сухари прижимаются к отверстиям или кольцевым проточкам на штоке.
Из-за высоких механических нагрузок на фаски и на концы их штоков наплавляется высокопрочный легированный сплав. Этот слой образует жаростойкое твердосплавное покрытие.
Выпускные клапаны подвергаются особенно сильной термической нагрузке, поэтому их, как правило, выполняют биметаллическими. При работе находящийся внутри клапана натрий расплавляется.
Расплавленный металл направляет тепло от тарелки клапана к его штоку. Тепло от штока передается к ГБЦ.
Для оптимизации отвода тепла температура выпускного клапана может быть снижена на 80°C и составляет 150°C.
Седло клапана в ГБЦ растачивается, фрезеруется или шлифуется таким образом, чтобы ширина поверхности контакта с тарелкой клапана составляла 1,5 — 2 мм.
Седло может быть отфрезеровано непосредственно в ГБЦ или изготовлено в виде отдельной детали и запрессовано в ГБЦ.
Механизм привода клапанов
Механизм привода клапанов с коромыслами и штангами является обычным для V-образных двигателей старой конструкции и двигателей с нижним расположением распредвала.
Большое число движущихся деталей препятствует работе двигателей с такими механизмами на высоких оборотах.
Этому недостатку меньше подвержена конструкция с верхним расположением распредвала, толкателем и коромыслом. В механизме удалены длинные штанги.
Конструкция с установленным сверху распредвалом и толкателем имеет меньше движущихся частей и позволяет создать более быстроходные ДВС.
Такая конструкция весьма компактна и завоевала признание при создании ДВС более чем с двумя клапанами на цилиндр.
Конструкция с рычагом клапана имеет относительно малое количество деталей, является довольно компактной и обеспечивает высокую частоту вращения ДВС.
Виды толкателей
Основной задачей толкателя является передача на клапан осевой силы от кулачка. В зависимости от конструкции ДВС он сам непосредственно передает силу или это происходит с помощью рычага клапана или штанги и коромысла.
Еще одна задача толкателя – восприятие боковой силы от кулачка (т.е. «защита» клапана от этой боковой силы).
Это возможно, т.к. толкатель устанавливается в направляющей. Различают механические (простые) и гидравлические толкатели.
Тепловой зазор клапана
При работе двигателя впускные и выпускные клапаны удлиняются в зависимости от роста температуры и материала, из которого они изготовлены. Кроме того, с течением времени из-за износа изменяются размеры деталей механизма привода клапана. Поэтому, чтобы обеспечить надежное закрытие клапана при любом состоянии и режиме работы, между деталями механизма привода клапана предусматривается зазор.
Обычно на холодном ДВС такой зазор больше, чем на прогретом. Зазор выпускных клапанов обычно больше, чем впускных. Это обусловлено более высокой температурой выпускных клапанов.
Когда тепловой зазор слишком мал, клапан открывается раньше, а закрывается позднее. Из-за сокращения времени контакта тарелки клапана с седлом сокращается отвод тепла, выпускной клапан может стать слишком горячим, кроме того, при слишком маленьком тепловом зазоре возможна ситуация, когда выпускной или впускной клапан закрывается не полностью.
Через образовавшуюся за счет неплотного закрытия выпускного клапана щель в камеру сгорания засасываются отработавшие газы; подобная ситуация для впускного клапана оборачивается обратными вспышками во впускном коллекторе.
Камера сгорания теряет герметичность, ДВС не может развить надлежащую мощность. Клапаны перегреваются из-за постоянного контакта с горячими отработавшими газами, в результате подгорают фаски тарелок и седла.
Когда тепловой зазор слишком велик, клапан открывается позднее, а закрывается раньше. Поэтому сокращается время его открытия и уменьшается проходное сечение, что приводит к ухудшению наполнения и падению мощности. Повышается механическая нагрузка на клапан и усиливаются шумы от работы клапана.
Регулировка зазоров клапанов
Процедура регулировки зазоров может быть различной для разных ДВС того или иного производителя. В зависимости от предписаний, она может проводится на холодном или на прогретом, а также на остановленном или на работающем на холостом ходу двигателе.
Например, на механизме, приводящем клапан непосредственно через толкатель, регулировка осуществляется подбором толщины регулировочной шайбы. Высокое качество материалов, применяемых в настоящее время при изготовлении деталей, позволяет избежать регулировки зазоров клапанов при обычном техническом обслуживании.
В случае ремонта возможно потребуется их регулировка. Еще один вариант регулировки – с помощью механических толкателей с различной толщиной днища. При регулировке зазора, заменяют толкатель в сборе.
Гидравлические толкатели (гидрокомпенсаторы)
Помимо выполнения стандартных функций гидравлические толкатели призваны компенсировать зазоры клапанов. Они компенсируют изменения размеров, вызванные нагревом и износом деталей, следовательно, в регулировке зазоров отсутствует необходимость.
Полость гидрокомпенсатора соединена с системой смазки. Днище корпуса толкателя имеет углубление, через которое масло поступает в надплунжерную полость. Кулачок распредвала, повернутый к толкателю тыльной стороной, не передает на него усилие и плунжерная пружина выдвигает плунжер вверх, выбирая зазор.
Таким образом, толкатель все время прилегает к поверхности кулачка. При перемещении плунжера вверх в подплунжерной (рабочей) полости образуется разрежение. Под его действием открывается шариковый клапан. Масло может перетекать из надплунжерной полости в подплунжерную (рабочую).
Если обращенный вниз кулачок начинает давить на толкатель, то эта сила передается на плунжер – давление в подплунжерной (рабочей) полости возрастает и шариковый клапан закрывается. Масло (как и всякая жидкость) в замкнутой рабочей полости практически не сжимается, поэтому толкатель под нагрузкой работает практически как цельная, не упругая деталь и клапан открывается.
Устройство блока цилиндров двигателя
Цилиндр служит направляющей для движения поршня и отвода тепла возникающего во время сгорания топливно-воздушной смеси. Сгорание в цилиндре происходит в пространстве между головкой блока цилиндров и поршнем. Уплотнение поршня в цилиндре реализуется за счет поршневых колец.
Существуют различные конструкции цилиндров, как отдельные, так и объединенные в блок цилиндров. Охлаждение происходит за счет воздушного или жидкостного охлаждения. Воздушное охлаждение цилиндров применяется очень редко – в основном все современные автомобили имеют жидкостное охлаждение.
Изготавливаются блоки цилиндров ДВС из чугуна или сплава легких металлов методом литья. Цилиндры могут быть выполнены непосредственно в корпусе блока.
В блоки из легко-сплавных металлов, из-за их меньшей прочности, устанавливаются гильзы цилиндров с двумя различными вариантами охлаждения.
Мокрые гильзы – при такой конструкции гильз охлаждение происходит за счет непосредственного контакта охлаждающей жидкости с гильзой.
Преимуществом блока с “мокрыми” гильзами, является простой ремонт по замене гильз и отсутствие необходимости замены поршней. Недостаток – склонность к коррозии и низкая прочность блока цилиндров.
Сухие гильзы запрессовывают в блок цилиндров и непосредственного контакта с охлаждающей нет. При запрессовке “сухих” гильз используют эффект сжатия/расширения при изменении температуры.
Охлажденную гильзу устанавливают в нагретый блок цилиндров, что облегчает запрессовку, но извлечь их из блока цилиндров без повреждения уже невозможно.
При ремонте блока цилиндров, гильзы растачивают и устанавливают поршни с уплотнительными кольцами ремонтного размера.
Устройство кривошипно-шатунного механизма двигателя
Устройство кривошипно-шатунного механизма двигателя состоит из трех основных элементов: поршень, шатун и коленчатый вал.
Поршень предназначен для восприятия силы давления газов сгорания топливо-воздушной смеси и передачи этой силы на коленчатый вал посредством шатуна с поршневым пальцем. Поршень должен быть как можно более легким, чтобы минимизировать силы инерции, возникающие при работе.
Он должен быть устойчив к термическим нагрузкам, обусловленным воздействием раскаленных отработавших газов, и отводить часть тепла, при этом, его тепловое расширение должно быть минимальным, чтобы предотвратить заклинивание в цилиндре (задир).
В устройство поршня двигателя входят основные элементы: жаровой пояс – область от верхней кромки поршня до зоны поршневых колец подвержена особенно высоким термическим нагрузкам, и, соответственно, называется жаровым поясом.
Днище поршня – часть поршня, которая подвержена наибольшим нагрузкам от давления и температуры.
Зона поршневых колец – в этой зоне размещены различные поршневые кольца для надлежащей герметизации цилиндра. С одной стороны, они препятствуют прорыву отработавших газов в картер, с другой стороны, они не допускают попадание моторного масла в камеру сгорания.
Попадание масла в камеру сгорания характеризуется синим дымом выхлопа и высокими нагрузками на каталитический нейтрализатор. Юбка служит направляющей при движении поршня в цилиндре.
Бобышки с отверстиями под поршневой палец – отверстия устанавливается поршневой палец, который служит для соединения поршня с шатуном. Поршневой палец фиксируется в поршне с помощью стопорных колец либо устанавливается в шатуне с натягом, обусловленным тепловым сжатием/расширением деталей в момент установки.
Различают два типа поршней: поршень со сплошной юбкой, выполненный целиком из одного сплава и терморегулируемый поршень с поперечным разрезом.
Терморегулируемый поршень с поперечным разрезом– для уменьшения температурного расширения в этот поршень встроена терморегулирующая стальная пластина. На температурное расширение также влияет разрез поршня.
Сильно нагруженные зоны поршня могут быть усилены встроенными частями из специального чугуна. Существуют также поршни с охлаждающими каналами в днище, масло в которые подается с помощью форсунок.
Силы воздействующие на поршень – это давление в камере сгорания бензинового ДВС при рабочем ходе на 6000 об/мин составляет 75 бар. Это давление воздействует на поршень с силой примерно в 5т с частотой примерно пятьдесят раз в секунду.
Под действием этой нагрузки поршень прилегает к той стенке цилиндра, которая находится напротив шатунной шейки коленчатого вала, поэтому эта сторона цилиндра подвержена наибольшему износу.
Для нейтрализации такого эффекта ось поршневого пальца немного смещают от центра поршня к нагружаемой стенке (смещение составляет 1–2% от диаметра поршня). Эту величину называют смещением оси поршневого пальца.
При такой конструкции поршень прилегает к нагружаемой стенке уже в момент такта сжатия, таким образом, поршень в последствии не ударяется о стенку цилиндра под действием давления газов воспламеняющейся топливо-воздушной смеси.
При работе ДВС юбка поршня нагревается до 150°C, а днище до 350°C. Такой неравномерный нагрев вызывает неравномерную тепловую деформацию поршня, которая может привести к его заклиниванию в цилиндре.
Поршень должен иметь такую конструкцию, которая позволяла бы ему принимать цилиндрическую форму при достижении рабочей температуры.
Для компенсации неравномерной тепловой деформации поршень должен иметь эллипсовидное сечение (больший размер эллипса по оси, перпендикулярной оси поршневого пальца), кроме того, верхняя часть поршня должна быть уже нижней, чтобы компенсировать большее тепловое расширение в области днища поршня.
Поршневые кольца должны быть упругими и не изменять своей формы при установке на поршень. Они герметизируют картер двигателя от прорыва газов из камеры сгорания и отводят тепло от поршня к стенкам цилиндра.
Сила прижатия кольца к стенкам цилиндра увеличивается за счет силы от давления газов, прилагаемой по внутреннему диаметру кольца.
Поршневые кольца изготавливаются из чугуна или высоколегированной стали. Для усиления коррозионной стойкости и износоустойчивости они могут подвергаться твердому хромированию. Различают два вида поршневых колец: компрессионные кольца и маслосъемные кольца.
Компрессионные кольца устанавливаются сверху, ближе к днищу поршня. Они предназначены для надлежащей герметизации камеры сгорания.
Компрессионные кольца бывают цилиндрическими (низкая стоимость изготовления), имеющими внутреннюю фаску и коническими (оба этих кольца быстро прирабатываются, т.к. имеют небольшую поверхность контакта со стенками цилиндра).
Существуют также компрессионные кольца с трапециевидным сечением (не устанавливаются жестко в канавке), кольца с L-образным сечением (с увеличенной силой прижатия к стенкам цилиндра за счет давления газов) и с обращенной вниз ступенькой (с маслосъемным действием).
Установленные ниже кольца являются маслосъемными, они препятствуют попаданию масла в камеру сгорания.
Маслосъемные кольца бывают коробчатыми с прорезями (с отводом масла внутрь поршня), а также кольца с расширителем или кольцевой пружиной (имеют малую поверхность контакта для увеличения силы прижатия).
Шатун соединяет поршень и коленчатый вал. На шатун воздействуют сильные знакопеременные растягивающие и сжимающие, а также изгибающие нагрузки.
Сечение в форме швеллера позволяет шатуну надлежащим образом сопротивляться этим нагрузкам.
В верхней головке шатуна устанавливается поршневой палец. Нижняя головка шатуна, ее крышка и оба вкладыша устанавливаются на шатунной шейке коленчатого вала.
Шатуны изготавливают большей частью ковкой в штампах из стали с последующей термической обработкой (улучшением). Для небольших ДВС применяют шатуны из высокопрочных алюминиевых сплавов.
Для фиксации положения вкладышей коленчатого вала на них предусмотрены специальные выступы, крышка центрируется относительно шатуна с помощью втулок – шатунных вкладышей.
Существую также шатуны и крышки, разъем между которыми выполняется методом разлома. Это повышает точность совмещения шатуна и крышки.
Коленчатый вал преобразует линейное перемещение шатунов во вращательное движение и соответственно крутящий момент.
Основная часть крутящего момента кривошипно-шатунного механизма ДВС передается на маховик, остальная необходима для привода газораспределительного механизма, масляного насоса, насоса охлаждающей жидкости и навесных агрегатов, таких как, генератор, компрессор кондиционера и т. д.
Коленчатые валы изготавливаются методом литья или ковкой в специальных штампах. Для увеличения прочности, ковка металла происходит по непрерывной линии для монолитной конструкции коленвала. Для изготовления используют легированную сталь с хромом, ванадием и молибденом.
Места установки коренных и шатунных вкладышей упрочняются и шлифуются. В зависимости от типа двигателя и количества цилиндров, коленвалы имеют различную форму. Опорой коленчатого вала являются коренные шейки расположенные на одной оси.
Шатуны подсоединяются к шатунным шейкам, расположенных под разными углами и эксцентриситетом относительно оси коленчатого вала. Через каналы в коленчатом валу к коренным и шатунным вкладышам подается масло.
Существуют неразъемные и составные коленчатые валы, из-за различных видов повышенных нагрузок, таких как, работа на изгиб и кручение, в ДВС легковых автомобилей используют неразъемные коленчатые валы.
Для уменьшения крутильных колебаний осуществляется балансировка коленвала удалением металла на противовесах. К балансировке коленвала предъявляют повышенные требования. Все одинаковые детали кривошипно-шатунного механизма двигателя должны иметь минимально возможное расхождение по весу.
Для обеспечения вращения коленчатого вала с минимальным трением и установки в необходимом положении, используют подшипники скольжения из составных вкладышей – коренных подшипников. Для исключения продольного перемещения применяют упорные вкладыши.
Для длительного срока службы и поддержания необходимого давления масла необходим точный зазор в подшипниках регламентированный заводом изготовителем. Если зазор выше нормы, то из-за уменьшения смазывающей способности происходит повышенный износ и выход подшипника из строя.
Масло под давлением, создаваемым масляным насосом, через каналы коленчатого вала подается к подшипникам скольжения.
Между вкладышами и шейкой коленвала образуется маслянная пленка исключающая соприкосновение металлических частей во время вращения коленвала. Такой эффект называют масляным клином.
Во время работы кривошипно-шатунного механизма из-за сил инерции возникают колебания, которые негативно сказываются на плавность работы ДВС и комфорт пассажиров.
Для компенсации колебаний и улучшения плавности работы ДВС используют балансирные валы, которые приводятся в движение через цилиндрические зубчатые колеса или цепной передачей.
Маховик сохраняет кинетическую энергию, полученную при рабочем ходе, а затем отдает ее. Этот принцип уменьшает неравномерность вращения коленчатого вала, вызванную наличием в рабочем цикле тактов, при которых не производится полезная работа, и прохождением мертвых точек.
На большинстве маховиков устанавливается зубчатый венец (сажается с натягом или привинчивается), с которым входит в зацепление шестерня стартера при запуске двигателя. От маховика момент передается на сцепление, которое передает его на коробку передач.
Маховики изготавливаются из стали или специального чугуна. Маховик проходит динамическую балансировку в сборе с коленчатым валом, это предотвращает возникновения колебаний на больших частотах вращения.
Если не предпринять данной меры, коленчатый вал вращался бы неравномерно, что сопровождалось бы повышенными нагрузками на сам вал и подшипники.
Устройство газораспределительного механизма двигателя (ГРМ)
Привод ГРМ с помощью цилиндрических зубчатых колес – в этом случае привод распределительного вала от коленчатого вала осуществляется с помощью набора цилиндрических шестерен.
Такое устройство ГРМ двигателя, нашло свое применение преимущественно на ДВС старой конструкции (двигатели с нижним расположением распредвала, V-образные двигатели). Шестерни выполняют косозубыми – это уменьшает шум от работы передачи.
Цепной привод ГРМ – распределительный вал в этом случае приводится с помощью цепи, используются как однорядные, так и многорядные цепи.
Цепь в большинстве случаев натягивается гидравлическим натяжителем, который использует для своей работы давление в системе смазки. Для уменьшения колебаний и шумов применяются успокоители цепи.
Привод ГРМ зубчатым ремнем – привод газораспределительного механизма с помощью армированного волокном зубчатого ремня практически бесшумен. Материал зубчатого ремня не предназначен для контакта с маслами и охлаждающей жидкостью.
Устройство газораспределительного механизма двигателя сконструировано таким образом, чтобы ремень был изолирован от масла и от охлаждающей жидкости. Зубчатый ремень необходимо заменять через предписанный меж-сервисный интервал.
Если визуальная проверка выявила наличие трещин на обратной стороне ремня или отсутствие/разрушение зубьев или тканевой основы, то необходимо заменить ремень, даже если предписанный момент замены еще не наступил.
Применяются зубчатые ремни с различной формой профиля зубьев. При установке нового ремня необходимо убедиться, что он имеет профиль зубьев, соответствующий профилю зубчатых шкивов.
Система вентиляции картера
В картере ДВС скапливаются газы, содержащие большое количество несгоревших углеводородов. Законодательные нормы, регламентирующие токсичность отработавших газов автомобиля, предписывают не допускать выброса картерных газов в атмосферу.
Эти газы попадают в картер, проникая между поршневыми кольцами и стенками цилиндров. Рисунок показывает, как пары газов, находящихся в картере и ГБЦ, с помощью соответствующих шлангов отводятся в систему впуска, а затем участвуют в процессе сгорания.
На современных автомобилях с бензиновыми ДВС используется система вентиляции, работающая в зависимости от нагрузки. На холостом ходу и на режимах с частичной нагрузкой, картерные газы отводятся во впускной коллектор через открытый клапан системы вентиляции картера (так называемый клапан PCV).
На режиме полной нагрузки разрежение во впускном коллекторе становится слишком мало, клапан PCV закрывается. Картерные газы отводятся в систему впуска через воздушный фильтр.
Устройство системы смазки двигателя
Существует принудительная система смазки ДВС с мокрым картером. Насос через заборник с сетчатым фильтром засасывает масло из поддона и подает его под давлением через трубопроводы и каналы системы смазки к соответствующим точкам двигателя. В автомобильных ДВС принудительная система смазки с мокрым картером используется чаще всего.
В принудительной системе смазки ДВС с сухим картером, стекающее в картер масло откачивается насосом в специальный циркуляционный бачок. Из него масло забирается подающим насосом и подается под давлением через фильтр и при необходимости через масляный радиатор к узлам двигателя.
Система смазки с сухим картером применяется в основном в спортивных автомобилях, внедорожниках и мотоциклах. На рисунке изображен контур принудительной системы смазки с мокрым картером. Запас масла находится в поддоне под блоком цилиндров.
Насос откачивает масло через заборник с сетчатым фильтром и подает его в фильтр. Очищенное масло из фильтра поступает к точкам смазки в головке и блоке цилиндров.
Масляный насос должен обеспечивать надлежащее давление масла и подачу (примерно 250-350 л/ч). Масло переносится, например, во впадинах между зубьями, от полости всасывания к полости нагнетания.
Распространение получили следующие типы насосов: шестеренный насос с наружным зацеплением, шестеренный насос с внутренним зацеплением и серповидным разделительным элементом и роторный насос.
Шестеренный насос с наружным зацеплением – в данном насосе масло захватывается зубьями и переносится во впадинах между ними вдоль стенок корпуса к полости нагнетания.
Зацепление зубьев обеих шестерен препятствует возвращению масла в полость всасывания. В полости всасывания образуется разрежение, а в полости нагнетания возникает давление.
Шестеренный насос с внутренним зацеплением и серповидным разделительным элементом – этот насос представляет собой одну из разновидностей шестеренных насосов.
В большинстве случаев его внутреннее зубчатое колесо установлено непосредственно на коленчатом вале. Наружное зубчатое колесо установлено по отношению к внутреннему со смещением (эксцентриситетом).
Таким образом внутри насоса образуются полости всасывания и нагнетания, отделенные друг от друга серповидным элементом. Масло транспортируется во впадинах между зубьями и поступает в нагнетающую полость как вдоль наружной, так и вдоль внутренней части разделительного элемента.
Преимущество насоса с серповидным элементом по сравнению с обычным шестеренным насосом (упомянутым выше) состоит в большей производительности, особенно на низких частотах вращения.
Роторный насос – основными элементами роторного насоса являются наружный ротор с внутренними зубьями и внутренний ротор с наружными зубьями. Насос приводится внутренним ротором, который расположен со смещением (эксцентриситетом). Он имеет на один зуб меньше, чем наружный.
Зубья внутреннего ротора выполнены таким образом, что они касаются каждого зуба наружного ротора и одновременно уплотняют образовавшиеся полости. При вращении роторов полости всасывания постоянно увеличиваются. Насос захватывает жидкость. Полости нагнетания уменьшаются.
Масло поступает под давлением в напорный трубопровод. Насос работает равномерно, т.к. порции масла поступают из нескольких следующих друг за другом полостей ротора. Такой насос может обеспечить высокое давление подачи масла при высокой производительности.
Для очистки масла и предотвращения загрязнения инородными металлическими частицами, появляющимися из-за износа деталей, используют масляный фильтр. Масляный фильтр не может очищать масло от жидких или растворившихся загрязнений.
По месту установки в масляном контуре различают полно-проточные фильтры (фильтры грубой очистки) и устанавливаемые параллельно главной масляной магистрали фильтры тонкой очистки.
Полно-проточные фильтры гарантируют фильтрацию всего масла, поступающего к трущимся частям двигателя. Надлежащая пропускная способность обеспечивается с помощью малого гидравлического сопротивления напрямую зависящее от тонкости отсева. Это уменьшает их фильтрующий эффект и мелкие частицы не отфильтровываются.
Фильтр тонкой очистки устанавливается параллельно основной масляной магистрали, поэтому через него проходит только часть подаваемого масла (5-10%). Таким образом к точкам смазки подается только частично очищенное масло.
Размеры пор фильтрующего элемента можно уменьшать до такой степени, чтобы отфильтровывать также мельчайшие частицы загрязнений из параллельного главной магистрали потока масла. Совместное применение полно-проточного фильтра (фильтра грубой очистки) и фильтра тонкой очистки.
Такая комбинация обеспечивает наилучшее очищающее действие. Такие системы нашли применение, например, в строительных машинах. По финансовым соображениям устройство системы смазки двигателя в большинстве автомобилей имеет систему с полно-проточным фильтром.
В двигателях внутреннего сгорания с повышенной термической нагрузкой устанавливают масляные форсунки охлаждения поршней, которые подают масло на днища поршней и это обеспечивает их лучшее охлаждение.
При перегреве масла ухудшаются его смазывающие свойства, т.к. оно становится слишком жидким, поэтому для уменьшения температуры и предотвращения перегрева устанавливают маслоохладители.
Маслоохладитель передает тепловую энергию масла окружающему воздуху или охлаждающей жидкости.
В некоторых системах смазки используется дополнительный термостат контура охлаждения маслоохладителя, который перекрывает подачу ОЖ в контур до достижения им определенной температуры, поэтому масло быстрее прогревается, что положительно сказывается на его смазывающих свойствах.
Назначение и классификация моторного масла
При увеличении меж-сервисных интервалов в отношении используемого масла предъявляются особенно высокие требования.
Основное назначение моторного масла – смазывать и охлаждать, т.е. предотвращать износ и отводить тепло от нагруженных деталей, кроме того, моторные масла должны:
- абсорбировать загрязнения, т.е. удерживать их в себе и тем самым предотвращать образование отложений;
- удалять высокотемпературные отложения;
- выдерживать высокие температуры (термическая стойкость);
- нейтрализовать образующиеся при сгорании кислоты;
- не терять своих свойств в течении всего меж-сервисного интервала (стойкость к старению, специально для тяжелых условий эксплуатации);
- обеспечивать защиту от коррозии;
- практически не менять свою вязкость;
- иметь низкую испаряемость легких фракций при высоких температурах;
- быть неагрессивным по отношению к уплотнениям;
- иметь малую вязкость при низких температурах.
Вязкость масла никак не связана с его качеством. Чем выше вязкость масла, тем ниже его текучесть. Масла разделяют по классам вязкости SAE. Они были определены Обществом автомобильных инженеров (Society of Automotive Engineers (SAE)). Таким образом, масла различают по их вязкости в зависимости от температуры.
Число перед буквой «W» (Winter — зима) указывает на вязкость при отрицательных температурах (параметр, важный при холодном пуске). Число после буквы «W» обозначает вязкостные свойства масла при 100°C, т.е. при высоких нагрузках. Сегодня применяются преимущественно универсальные масла, например SAE 15 W 40, отвечающие разным классам вязкости.
Американский нефтяной институт (American Petroleum Institute (API)) совместно с SAE и Американским обществом специалистов по испытаниям и материалам (ASTM (American Society for Testing and Materials)) разработали систему классификации моторных масел по их свойствам и назначению. Моторные масла были разделены на два основных класса:
- класс S – масла для бензиновых ДВС;
- класс C – масла для дизельных ДВС.
Внутри этих классов масла разделили по качеству на подклассы, обозначив их дополнительной буквой (например, API SH/CF). Спецификация для бензиновых двигателей:
- SE: бензиновые с 1971 года;
- SF: бензиновые с 1981 года;
- SG: малая склонность к образованию отложений на поршнях, уменьшенное образование отложений;
- SH: более высокие требования (с энергосберегающими маслами и жестким контролем за продукцией);
- SJ: высочайшие требования к маловязким маслам (0 W 20, 5 W 20, 10 W 30).
Повышенные требования к защите лямбда-зондов. Использование новых методик для измерения стойкости к пенообразованию, гелеобразованию, термическим нагрузкам и окислению. Спецификация для дизельных двигателей:
- CA: малые нагрузки;
- CB: средние нагрузки;
- CC: нагрузки от средних до высоких;
- CD: особенно для дизельных ДВС с турбонаддувом;
- CE: тяжелонагруженные и высокооборотные дизельные ДВС с турбонаддувом и без, предназначенные для работы с резким изменением режима нагрузки;
- CF: новая версия спецификации CD.
Система охлаждения ДВС
Система охлаждения двигателя внутреннего сгорания предназначена для обеспечения быстрого прогрева двигателя до оптимальной температуры и отвода от него избыточного тепла во время работы.
Примерно треть тепловой энергии сгоревшего топлива расходуется на нагрев компонентов (поршней, цилиндров, ГБЦ, турбокомпрессоров (турбонаддува) и моторного масла). Вследствие ограниченной термической стойкости необходим теплоотвод.
Самые экономичные бензиновые и дизельные ДВС с непосредственным впрыском преобразуют в полезную работу только примерно 46% энергии в топливе, остальная часть энергии теряется (уходит с отработавшими газами, рассеивается системой охлаждения, расходуется на трение).
Непрогретая охлаждающая жидкость (ОЖ) под действием насоса циркулирует в системе охлаждения, кроме того, в зависимости от конструкции и настроек отопителя, охлаждающая жидкость проходит через теплообменник отопителя, такой контур циркуляции называют «малым».
После прогрева охлаждающей жидкости, термостат открывает проход ОЖ в радиатор. ОЖ начинает циркулировать по так называемому «большому контуру», если температура ОЖ продолжает расти, то термо-выключатель или блок управления двигателя по данным с датчика ECT включает электрический вентилятор радиатора охлаждения.
Другой метод – привод вентилятора ремнем через термо-регулируемую муфту. Расширительный бачок служит для компенсации теплового расширения охлаждающей жидкости. Температура ОЖ в зависимости от режима работы и созданной производителем конструкции ДВС, находится в диапазоне температур:
- примерно 100-120 C для легковых автомобилей;
- примерно 90-95 C для грузовых автомобилей.
Максимально допустимое избыточное давление в системах охлаждения современных автомобилей находится в диапазоне температур:
- примерно 1,3-2 бар для легковых автомобилей;
- примерно 0,5-1,1 бар для грузовых автомобилей.
Охлаждающая жидкость, как правило, является смесью не содержащей извести воды и антифриза с антикоррозийными присадками. Они должны быть совместимы с агрегатами данного автомобиля.
Объем системы охлаждения примерно в 4-6 раз больше рабочего объема двигателя. Интенсивность циркуляции ОЖ примерно 10-50 раз в минуту.
Устройство системы питания двигателя
Устройство системы питания двигателя включает в себя следующие компоненты: топливный бак; топливный фильтр; топливные магистрали; топливный насос; форсунки.
Система впрыска бензинового ДВС дозирует топливо с высочайшей точностью. Для защиты прецизионных деталей от повреждений необходимо обеспечить эффективную очистку топлива.
Загрязнения улавливаются фильтром в контуре циркуляции топлива. Используемые топливные фильтры: фильтр в топливной магистрали – сменный фильтр (устанавливается в разрез топливной магистрали); фильтр в топливном баке не требующий замены.
В современных системах впрыска топлива для создания давления и подачи топлива используются исключительно электрические топливные насосы.
По месту установки различают насосы, устанавливаемые в разрыв топливной магистрали. Они могут быть установлены в произвольном месте в разрыве топливной магистрали.
Насосы устанавливаемые в баке, в большинстве случаев являются частью установленного в баке модуля подачи топлива.
Электроуправляемые форсунки впрыскивают находящееся в рампе (аккумуляторе давления) топливо во впускной коллектор или непосредственно в камеру сгорания. Топливо в рампе находится под надлежащим давлением.
Форсунки открываются на такой период времени, чтобы подать необходимое количество топлива. Форсунки должны впрыскивать топливо в камеру сгорания таким образом, чтобы обеспечить надлежащее соответствующее геометрии камеры сгорания смесеобразование.
Топливная система дизельного двигателя внутреннего сгорания включает в себя следующие компоненты:
- топливный бак;
- топливный фильтр;
- топливные магистрали;
- топливный насос высокого давления аккумуляторной системы (Common Rail) или топливный насос высокого давления распределительного типа;
- топливную рампу (аккумулятор давления, система Common Rail);
- электроуправляемые форсунки аккумуляторной системы (Common Rail) или механические форсунки (топливный насос высокого давления распределительного типа).
В зависимости от конструкции могут устанавливаться также нагревательный элемент предварительного подогрева топлива и подкачивающий насос.
Топливный фильтр служит для улавливания частиц, загрязняющих дизельное топливо, он устанавливается перед компонентами, которые могут быть повреждены этими частицами, и тем самым гарантирует безупречную работу этих компонентов.
Исполнения топливного фильтра дизельного двигателя: фильтр предварительной очистки, в большинстве случаев сетчатый, устанавливается в дополнение к основному; основной фильтр конструктивно может быть выполнен в виде корпуса с фильтрующим элементом или в виде простого сменного фильтра.
Топливоподкачивающий насос интегрируют в топливный насос высокого давления (ТНВД). Топливо попадает в ТНВД, проходя через топливный фильтр. ТНВД дизельного двигателя предназначен для создания необходимого для впрыска давления топлива.
Распределение и фильтрация впускаемого воздуха
Система впуска включает в себя трубопровод забора воздуха, воздушный фильтр и впускной коллектор. Ее задачами являются очистка забираемого воздуха и подача топливо-воздушной смеси или воздуха в цилиндры.
Воздушный фильтр предотвращает проникновение в двигатель частиц минеральной пыли. Это уменьшает износ подшипников, поршневых колец и стенок цилиндров, кроме того, воздушный фильтр помогает уменьшить расход топлива и токсичность отработавших газов.
Впускной коллектор в настоящее время изготавливается как правило из пластмассы. Некоторые конструкции впускных коллекторов предусматривают их изготовление из алюминиевых сплавов.
Для достижения наилучшего наполнения внутренние поверхности впускного коллектора должны быть как можно более гладкими, чтобы минимизировать сопротивление проходящему воздуху/топливо-воздушной смеси.
Впускные каналы к каждому цилиндру делают одинаковыми по длине и диаметру. Таким образом впуск для всех цилиндров происходит при одинаковых условиях, это обеспечивает равномерность их наполнения.
Длина впускных каналов оказывает существенное влияние на наполнение цилиндра. На высоких частотах вращения двигателя более короткий впускной канал способствует увеличению крутящего момента, соответственно, при низких частотах вращения более оптимальной оказывается большая длина впускных каналов.
Система впрыска топлива и свечей подогрева
Различают следующие виды систем впрыска топлива бензиновых ДВС: системы одноточечного (центрального) впрыска; системы распределенного (многоточечного) впрыска; системы непосредственного впрыска.
В системе одноточечного впрыска топливо впрыскивается во впускной коллектор одной электроуправляемой (электромагнитной) форсункой, установленной перед дроссельной заслонкой.
Необходимое давление создает электрический топливный насос. Система одноточечного впрыска (TBI = Throttle Body Fuel Injection) работает под управлением электронного блока.
В системе распределенного (многоточечного) впрыска топливо впрыскивается в каналы впускного коллектора непосредственно перед впускными клапанами. Форсунками управляет электронный блок.
В системах непосредственного впрыска топливо впрыскивается непосредственно в камеру сгорания, где и происходит образование топливно-воздушной смеси.
Такой принцип (как в дизельных ДВС) позволяет достичь более высокого КПД и, соответственно, снизить расход топлива.
Для дизельных ДВС делается различие в зависимости от процесса впрыскивания топлива: непрямой впрыск; прямой (непосредственный) впрыск.
В двигателях с непрямым впрыском топливо впрыскивается в предкамеру или вихревую камеру. В двигателях с прямым впрыском топливо впрыскивается в углубление в днище поршня.
Такой способ смесеобразования предусматривает наличие отделенной от основной камеры сгорания сферической вихревой камеры, эта камера соединена каналом с основной камерой сгорания.
Предкамера расположена по возможности ближе к центру основной камеры сгорания. Эта камера соединена каналом с основной камерой сгорания. В предкамере установлены свеча подогрева и форсунка.
В дизельном ДВС с непосредственным впрыском (с неразделенными камерами сгорания) топливо под высоким давлением впрыскивается непосредственно в камеру сгорания (углубление в поршне).
Образование топливо-воздушной смеси происходит в камере сгорания. Такой принцип позволяет достичь более высокого КПД и, соответственно, снизить расход топлива.
Система свечей предварительного подогрева служит для облегчения пуска дизельного ДВС. В холодном дизельном двигателе сжатие сопровождается прорывом газов из камеры сгорания и большими тепловыми потерями.
Поэтому достаточные для пуска давление и температура в конце такта сжатия достигаются в этом случае только после многочисленных оборотов двигателя.
Чтобы прогреть перед пуском воздух в камере сгорания дизельного ДВС, в нее устанавливают свечи подогрева. Время прогрева зависит от внешней температуры и конструкции ДВС.
Зажигание ДВС
Для генерации искры используется энергия от аккумуляторной батареи. Топливно-воздушная смесь воспламеняется электрической искрой, возникающей между электродами свечи зажигания. В преобладающих на бензиновых ДВС индуктивных системах зажигания необходимая для возникновения искры энергия аккумулируется в катушке зажигания.
Величину этой энергии определяет время, за которое заряжается катушка (время протекания тока в первичной обмотке катушки, угол замкнутого состояния контактов прерывателя). Прерывание тока в первичной обмотке катушки приводит к образованию искры и воспламенению топливо-воздушной смеси. Современные системы зажигания управляются с помощью электронного блока управления.
Полное сгорание топливо-воздушной смеси происходит примерно за две миллисекунды после ее воспламенения искрой (момент зажигания). Момент зажигания должен быть перед ВМТ (так называемое опережение зажигания) – это обеспечивает полное сгорание смеси и достижение максимального давления газов в цилиндре уже после ВМТ.
Различным нагрузкам соответствует различная оптимальная величина опережения зажигания. С ростом частоты вращения зажигание должно быть более ранним, т.к. время на сгорание топливо-воздушной смеси уменьшается.
Свечи зажигания предназначены для воспламенения топливо-воздушной смеси с помощью электрической искры. По достижении напряжения зажигания между электродами свечи происходит искровой разряд. Конструкция свечей зажигания имеет центральный электрод и один или несколько массовых электродов.
Массовые электроды крепятся на корпусе свечи. В зависимости от конструкции свечи они могут быть по-разному расположены относительно центрального электрода: массовый электрод, расположенный над центральным; массовый электрод с боковым расположением.
Система выпуска отработавших газов
Система выпуска отработавших газов предназначена для отвода отработавших газов к задней части автомобиля, глушения звуковых колебаний и уменьшения токсичности отработавших газов (с помощью каталитических нейтрализаторов).
Система выпуска включает в себя выпускной коллектор, трубы с глушителями и, в зависимости от исполнения, катализатор. Характеристики системы выпуска специально согласовывают с ДВС. Это необходимо для надлежащего глушения шума и оптимизации мощности ДВС.
В систему выпуска также могут входить турбокомпрессор (турбонаддув) и система рециркуляции отработавших газов. Выпускной коллектор является наиболее подверженной тепловым нагрузкам деталью выпускной системы, поэтому он изготавливается из чугуна.
Трубы и глушители изготавливаются из листовой стали. Вся система выпуска подвергается внутренней (агрессивные отработавшие газы) и наружной коррозии (вода, антигололедные реагенты), воздействию высоких температур и колебаний.
При повреждении или не герметичности системы выпуска необходимо выполнить ее ремонт или замену деталей, в противном случае возможно попадание в салон токсичных отработавших газов. Кроме того, из-за подсоса наружного воздуха в систему выпуска нарушается работа системы управления ДВС.
Сильфоны предназначены для компенсации взаимного смещения элементов системы выпуска. Тепловое расширение и вибрации в этом случае не приводят к возникновению внутренних напряжений в материалах, из которых сделаны компоненты системы, таким образом удается избежать возникновения трещин и поломки деталей.
В отработавших газах содержатся токсичные вещества, количество которых можно уменьшить, используя: соответствующее топливо (с низким содержанием серы, неэтилированное), каталитические нейтрализаторы и специальные системы в двигателе (например, систему рециркуляции отработавших газов).
Законодательством установлены предельные величины токсичности выбрасываемых автомобилем отработавших газов. Для того чтобы уровень токсичности оставался в надлежащих пределах, необходима каталитическая доочистка отработавших газов. Поток отработавших газов проходит через установленный в системе каталитический нейтрализатор.
Размещенный в нем послойно катализатор действует таким образом, что находящиеся в отработавших газах токсичные вещества вступают в химическую реакцию, в ходе которой они преобразуются в относительно безвредные для человека и окружающей среды соединения.
Система рециркуляции отработавших газов и турбонаддув
Система рециркуляции отработавших газов необходима для снижения выброса вредных веществ. При обедненной смеси и высоких температурах горения, происходит образование оксидов азота (NOx).
Для уменьшения температуры горения, часть выхлопных газов из выпускного коллектора. с помощью клапана системы рециркуляции отработанных газов, возвращается во впускной коллектор.
Это необходимо для уменьшения концентрации кислорода в топливно-воздушной смеси, который влияет на температуру горения. Таким образом можно снизить количество оксидов азота в отработавших газах.
Из существующих видов наддува ДВС широчайшее распространение получил турбонаддув.
Турбонаддув позволяет двигателям малого рабочего объема выдавать большие мощность и крутящий момент при высоких значениях КПД.
Если раньше турбокомпрессоры (турбонаддув) применялись прежде всего для увеличения удельной мощности, то сейчас они все больше используются для увеличения крутящего момента на малых и средних оборотах.
Заключение
Вы узнали устройство двигателя внутреннего сгорания, но механизмы и системы ДВС постоянно совершенствуются, и количество их становится все больше – особенности устройства двигателя становятся все сложнее.
Совершенствуется система зажигания, система газораспределения с регулировкой фаз газораспределения устанавливается уже на многих ДВС разных производителей, разработаны двигатели с регулируемой степенью сжатия в цилиндрах.
Автомобили, приводимые в движение ДВС, объединяют с электродвигателями (гибридные системы привода) и т. д. Прогресс не стоит на месте – устройство двигателя меняется очень быстро. Подписывайтесь на рассылку, чтобы ничего не пропустить, не развивайте скорость больше, чем летает Ваш ангел-хранитель, и удачи на дорогах!
Источник http://icarbio.ru/articles/vlijanie-diametra-cilindra.html
Источник https://medwegonok.ru/diametr-tsilindra-dvigatelya-eto/
Источник https://lesovoj.ru/dvigatel-vnutrennego-sgoraniya-avtomobilya/
Источник