Что такое конусность цилиндра двигателя
Диаметр поршня Д,мм Допускаемые овальность и конусность
Менее 100 0,002Д
От 100 до 200 (0,002 – 0,0015)Д
От 200 до 300 (0,0015 – 0,0012)Д
Более 300 (0,0012 – 0,001)Д
Для крейцкопфных двигателей рекомендуется эти значения увеличить на 50%.
Конусность канавок под поршневые кольца не допускается более 0,02 мм.
Наработки в канавках под поршневые кольца не допускаются.
Трещины на поверхностях поршня не допускаются,исправления заваркой производится лишь на стальных поршнях.
Допустимое обгорание головок поршней устанавливается по практическим соображениям,обгоревшие поршни подвергаются гидравлическому испытанию.
Обмер поршня в соответствии с «Инструкцией по производству обмеров и определению износов основных деталей ДВС» с 4-9 карты 3Т-7Т.
Ход работы.
1.Визуально осмотреть поршень и палец,выявить наличие трещин и других дефектов.
2.Обмерить микрометрической скобой тронк поршня.
3.Обмерить высоту канавок.
5.Дать ответы на контрольные вопросы.
Таблица обмера.
№№ цилиндров | Диаметр поршня | Наибольший износ | |
Горизонты обмера | |||
овальность | На диаметр | ||
По оси | По вра- щению | По оси | По вра- щению |
Обмер канавок.
№поршня | Номинальная высота |
№канавки |
Заключительный контроль.
1.Почему тронк поршня изнашивается на овал?
2.Как определить овальность?
3.Как определить износ на диаметр?
4.Почему канавки поршня имеют разную высоту?
5.Что произойдёт при закоксовывании канавок?
6.Что произойдёт при износе канавок?
Литература:
1. Инструкция по производству обмеров и определению износов основных деталей DBC. –Л.: Судостроение.
Лабораторная работа №37
Тема:проверка геометрии поршня
Цель:приобрести практические навыки проверки геометрии деталей ДВС
Материальное обеспечение:
1.Поршень
3.Индикатор на штативе
Вводный контроль:
1.Из каких материалов изготавливается поршень
2.Как исправить смещение и неперпендикулярность осей поршня?
Пояснения к работе
Для нормальной и длительной эксплуатации любого механизма кроме регламентированной точности зазоров необходимо обеспечить правильное геометрическое расположение рабочих поверхностей.Рассматривая судовой ДВС следует в процессе его сборки обеспечить параллельность наружной образующей поверхности поршня зеркалу цилиндровой втулки.Отклонение параллельности не должно превышать 0,15 мм/м,указанная погрешность зависит от целого ряда звеньев,но наибольшая доля выпадает на узел поршень-шатун,в силу чего к координации этих поверхностей предъявляются жесткие требования.
Технические условия на обработку поршня
Ось отверстия под поршневой палец должна быть перпендикулярна оси поршня и пересекать её.
а) на перепендикулярность не боле 0,15 мм/м
б) на смещение оси отверстия не более 0,30 мм
1.Провекра перпендикулярности осей отверстия под палец и поршня производится на плите при помощи контрольного валика и индикатора на штативе.При такой проверке торец поршня.устанавливаемой на плиту должен быть перепендикулярен его оси.Неперпендикулярность осей определяется по формуле:
2.Пересечение осей пальца и поршня также проверяется по плите с помощью контрольного валика,призмы и индикатора на штативе.Величина отклонения определяется по формуле:
Калькулятор расчета рабочего объёма двигателя внутреннего сгорания
-
145 4 153k
-
30 0 41k
Рабочий объем цилиндра представляет собой объем находящийся между крайними позициями движения поршня.
Формула расчета цилиндра известна еще со школьной программы – объем равен произведению площади основания на высоту. И для того чтобы вычислить объем двигателя автомобиля либо мотоцикла также нужно воспользоваться этими множителями. Рабочий объём любого цилиндра двигателя рассчитывается так:
h — длина хода поршня мм в цилиндре от ВМТ до НМТ (Верхняя и Нижняя мёртвая точка)
r — радиус поршня мм
п — 3,14 не именное число.
Как узнать объем двигателя
Для расчета рабочего объема двигателя вам будет нужно посчитать объем одного цилиндра и затем умножить на их количество у ДВС. И того получается:
Vдвиг = число Пи умноженное на квадрат радиуса (диаметр поршня) умноженное на высоту хода и умноженное на кол-во цилиндров.
Поскольку, как правило, параметры поршня везде указываются в миллиметрах, а объем двигателя измеряется в см. куб., то для перевода единиц измерения, результат придется разделить еще на 1000.
Заметьте, что полный объем и рабочий, отличаются, так как поршень имеет выпуклости и выточки под клапана и в него также входить объем камеры сгорания. Поэтому не стоит путать эти два понятия. И чтобы рассчитать реальный (полный) объем цилиндра, нужно суммировать объем камеры и рабочий объем.
Определить объем двигателя можно обычным калькулятором, зная параметры цилиндра и поршня, но посчитать рабочий объем в см³ нашим, в режиме онлайн, будет намного проще и быстрее, тем более, если вам расчеты нужны, дабы узнать мощность двигателя, поскольку эти показатели напрямую зависят друг от друга.
Расчет объема ДВС калькулятором
Чтобы посчитать объем интересующего вас двигателя нужно внести 3 цифры в соответствующие поля, — результат появится автоматически. Все три значения можно посмотреть в паспортных данных автомобиля или тех. характеристиках конкретной детали либо же определить, какой объем поршневой поможет штангенциркуль.
Таким образом, если к примеру у вас получилось что объем равен 1598 см³, то в литрах он будет обозначен как 1,6 л, а если вышло число 2429 см³, то 2,4 литра.
Длинноходный и короткоходный поршень
Также замете, что при одинаковом количестве цилиндров и рабочем объеме двигателя могут иметь разный диаметр цилиндров, ход поршней и мощность таких моторов так же будет разной. Движок с короткоходными поршнями очень прожорлив и имеет малый КПД, но достигает большой мощности на высоких оборотах. А длинноходные стоят там, где нужна тяга и экономичность.
Следовательно, на вопрос «как узнать объем двигателя по лошадиным силам» можно дать твердый ответ – никак. Ведь лошадиные силы хоть и имеют связь с объемом двигателя, но вычислить его по ним не получится, поскольку формула их взаимоотношения еще включает много разных показателей. Так что определить кубические сантиметры двигателя можно исключительно по параметрам поршневой.
Зачем нужно проверять объем двигателя
Чаще всего узнают объем двигателя когда хотят увеличить степень сжатия, то есть если хотят расточить цилиндры с целью тюнинга. Поскольку чем больше степень сжатия, тем больше будет давление на поршень при сгорании смеси, а следовательно, двигатель будет более мощным. Технология изменения объема в большую сторону, дабы нарастить степень сжатия, очень выгодна — ведь порция топливной смеси такая же, а полезной работы больше. Но всему есть свой предел и чрезмерное её увеличение грозит самовоспламенением, вследствие чего происходит детонация, которая не только уменьшает мощность, но и грозит разрушением мотора.
Часто задаваемые вопросы
В чем измеряется объем двигателя?
Объем двигателя измеряется в кубических сантиметрах (см3), но в документации часто пишется именно в литрах (л.). 1000 кубических сантиметров равны 1 литру. Единица самого точного измерения объема именно куб сантиметры, поскольку, когда объем двигателя автомобиля указывается в литрах, то производится округление до целого числа после запятой. Например, объем 2,4 л. равны 2429 см3.
Какая формула рабочего объем цилиндра двигателя?
Рабочий объем цилиндра двигателя равен произведению числа Пи (3.1415) на квадрат радиуса основания и на высоту хода в нем поршня. Сама формула объема цилиндра ДВС в куб. сантиметрах выглядит так: Vраб = π⋅r²⋅h/1000
Как измерить объем двигателя автомобиля?
Объем двигателя – это сумма рабочих объемов всех его цилиндров, соответственно, необходимо сначала узнать какой объем одного цилиндра, а затем умножить на их количество. Объем цилиндра вычисляют, умножив высоту на квадрат радиуса и число «Пи». Но, чтобы измерить именно рабочий объем цилиндра в двигателе, за высоту нужно брать длину хода поршня от НМТ до ВМТ, а радиус можно померить также линейкой, узнав сначала диаметр цилиндра. Такой метод измерения возможен только при снятой головке либо заведомо известных параметрах.
Объем двигателя 1.8 л. в см3
При конверсии метрической единица объема равной 1,8 литра, то в куб. см это будет 1800 см³, но если это касается именно объема двигателя, то он может варьироваться так как производитель, указывая объем 1.8, округляет значение от того что измеряется в см3. То есть это может быть, как 1799, так и 1761, и даже 1834. Следовательно, какой объем двигателя 1.8 в см³, можно узнать лишь из технической характеристики конкретного автомобиля.
Цилиндр и поршень: что нужно знать об этих деталях и как продлить срок их службы?
Смотрите также
Цилиндр и поршень – ключевые детали любого двигателя. В замкнутой полости цилиндро-поршневой группы (ЦПГ) происходит сгорание топливно-воздушной смеси. Газы, образующиеся при этом, воздействуют на поршень – он начинает двигаться и заставляет вращаться коленчатый вал.
Цилиндр и поршень обеспечивают оптимальный режим работы двигателя в любых условиях эксплуатации автомобиля.
Рассмотрим эту пару подробнее: конструкцию, функции, условия работы, возможные проблемы при эксплуатации элементов ЦПГ и пути их решения.
Принцип работы цилиндро-поршневой группы
Современные двигатели внутреннего сгорания оснащены блоками, в которые входят от 1 до 16 цилиндров – чем их больше, тем мощнее силовой агрегат.
Внутренняя часть каждого цилиндра – гильза – является его рабочей поверхностью. Внешняя – рубашка – составляет единое целое с корпусом блока. Рубашка имеет множество каналов, по которым циркулирует охлаждающая жидкость.
Внутри цилиндра находится поршень. В результате давления газов, выделяющихся в процессе сгорания топливно-воздушной смеси, он совершает возвратно-поступательное движения и передает усилия на шатун. Кроме того, поршень выполняет функцию герметизации камеры сгорания и отводит от нее излишки тепла.
Поршень включает следующие конструктивные элементы:
- Головку (днище)
- Поршневые кольца (компрессионные и маслосъемные)
- Направляющую часть (юбку)
Бензиновые двигатели оснащены достаточно простыми в изготовлении поршнями с плоской головкой. Некоторые модели имеют канавки, способствующие максимальному открытию клапанов. Поршни дизельных двигателей отличаются наличием на днищах выемок – благодаря им воздух, поступающий в цилиндр, лучше перемешивается с топливом.
Кольца, установленные в специальные канавки на поршне, обеспечивают плотность и герметичность его соединения с цилиндром. В двигателях разного типа и предназначения количество и расположение колец могут отличаться.
Чаще всего поршень содержит два компрессионных и одно маслосъемное кольцо.
Компрессионные (уплотняющие) кольца могут иметь трапециевидную, бочкообразную или коническую форму. Они служат для минимизации попадания газов в картер двигателя, а также отведения тепла от головки поршня к стенкам цилиндра.
Верхнее компрессионное кольцо, которое изнашивается быстрее всех, обычно обработано методом пористого хромирования или напылением молибдена. Благодаря этому оно лучше удерживает смазочный материал и меньше повреждается. Остальные уплотняющие кольца для лучшей приработки к цилиндрам покрывают слоем олова.
С помощью маслосъемного кольца поршень, совершающий возвратно-поступательные движения в гильзе, собирает с ее стенок излишки масла, которые не должны попасть в камеру сгорания. Через дренажные отверстия поршень «забирает» масло внутрь, а затем отводит его в картер двигателя.
Направляющая часть поршня (юбка) обычно имеет конусную или бочкообразную форму – это позволяет компенсировать неравномерное расширение поршня при высоких рабочих температурах. На юбке расположено отверстие с двумя выступами (бобышками) – в нем крепится поршневой палец, служащий для соединения поршня с шатуном.
Палец представляет собой деталь трубчатой формы, которая может либо закрепляться в бобышках поршня или головке шатуна, либо свободно вращаться и в бобышках, и в головке (плавающие пальцы).
Поршень с коленчатым валом соединяется шатуном. Его верхняя головка движется возвратно-поступательно, нижняя вращается вместе с шатунной шейкой коленвала, а стержень совершает сложные колебательные движения. Шатун в процессе работы подвергается высоким нагрузкам – сжатию, изгибу и растяжению – поэтому его производят из прочных, жестких, но в то же время легких (в целях уменьшения сил инерции) материалов.
Конструкционные материалы деталей ЦПГ
Сегодня цилиндры и поршни двигателя чаще всего производят из алюминия или стали с различными присадками. Иногда для внешней части блока цилиндров используют алюминий, имеющий небольшой вес, а для гильзы, контактирующей с движущимся поршнем, – более прочную сталь.
В отличие от чугуна, который применялся ранее для изготовления деталей ЦПГ, внедрение алюминия – намного более легкого, но износостойкого материала – стало толчком к появлению мощных и высокооборотистых двигателей.
Современные автомобили, особенно с дизельными двигателями, все чаще оснащаются сборными поршнями из стали. Они имеют меньшую компрессионную высоту, чем алюминиевые, поэтому позволяют использовать удлиненные шатуны. В результате боковые нагрузки в паре «поршень-цилиндр» существенно снижаются.
Поршневые кольца, наиболее подверженные износу и деформациям, производят из специального высокопрочного чугуна с легирующими добавками (молибденом, хромом, вольфрамом, никелем).
Значительные механические и тепловые циклические нагрузки отрицательно сказываются на работоспособности элементов цилиндро-поршневой группы. В то же время от их состояния напрямую зависит стабильная компрессия двигателя, обеспечивающая его уверенный холодный и горячий запуск, мощность, экологичность и другие эксплуатационные показатели.
Именно поэтому для изготовления поршней и других деталей ЦПГ применяются материалы, обладающие высокой механической прочностью, хорошей теплопроводностью, незначительным коэффициентом линейного расширения, отличными антифрикционными и антикоррозионными свойствами.
В целях снижения потерь на трение производители поршней покрывают их боковую поверхность специальными антифрикционными составами на основе твердых смазочных частиц: графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается, поршни снова испытывают высокие нагрузки, под влиянием которых изнашиваются и выходят из строя.
Одним из самых эффективных антифрикционных покрытий поршней является MODENGY Для деталей ДВС.
Состав на основе сразу двух твердых смазок – высокоочищенного дисульфида молибдена и поляризованного графита – применяется для первоначальной обработки юбок поршней или восстановления старого заводского покрытия.
MODENGY Для деталей ДВС имеет практичную аэрозольную упаковку с оптимально настроенными параметрами распыления, поэтому наносится на юбки поршней легко, быстро и равномерно.
На поверхности покрытие создает долговечную сухую защитную пленку, которая снижает износ деталей и препятствует появлению задиров.
MODENGY Для деталей ДВС полимеризуется при комнатной температуре, не требуя дополнительного оборудования.
Для подготовки поверхностей перед нанесением покрытия их необходимо обработать Специальным очистителем-активатором MODENGY. Только в таком случае производитель гарантирует прочное сцепление состава с основой и долгий срок службы готового покрытия. Оба средства входят в Набор для нанесения антифрикционного покрытия на детали ДВС.
Методы охлаждения и смазывания цилиндро-поршневой группы
В каждом цикле работы двигателя сгорает большое количество топливно-воздушной смеси. При этом все детали цилиндро-поршневой группы испытывают экстремальные температурные воздействия, поэтому нуждаются в эффективном охлаждении – воздушном или жидкостном.
Наружная поверхность цилиндров ДВС с воздушным охлаждением покрыта множеством ребер, которые обдувает встречный или искусственно созданный воздухозаборниками воздух.
При водяном охлаждении жидкость, циркулирующая в толще блока, омывает нагретые цилиндры, забирая таким образом излишек тепла. Затем жидкость попадает в радиатор, где охлаждается и вновь подается к цилиндрам.
Второй по важности момент после отвода тепла – система смазки цилиндров. Без нее поршни рано или поздно подвергаются заклиниванию, что может привести к поломке двигателя.
Для того чтобы масляная пленка дольше удерживалась на внутренних поверхностях цилиндров, их подвергают хонингованию, т.е. нанесению специальной микросетки. Стабильность слоя масла гарантирует не только максимально низкое трение в паре «поршень-цилиндр», но и способствует отведению лишнего тепла из ЦПГ.
Неисправности ЦПГ и их диагностика
Даже грамотная эксплуатация автомобиля не гарантирует, что со временем не возникнет проблем с его цилиндро-поршневой группой.
О неисправностях деталей ЦПГ свидетельствует увеличение расхода масла, ухудшение пусковых качеств двигателя, снижение его мощности, появление каких-либо посторонних шумов при работе. Эти моменты нельзя игнорировать, так как стоимость ремонта цилиндро-поршневой группы иногда равна стоимости автомобиля в целом.
Под влиянием очень высоких нагрузок и температур:
- На рабочих поверхностях цилиндров появляются трещины, сколы, пробоины
- Посадочные места под гильзу деформируются
- Днища поршней оплавляются и прогорают
- Поршневые кольца разрушаются, закоксовываются, залегают
- На теле поршней возникают различные повреждения
- Зазоры между поршнем и цилиндром сужаются, вследствие чего на юбках появляются задиры
- Наблюдается общий износ цилиндров и поршней
Перечисленные неисправности цилиндро-поршневой группы неизбежны при перегреве двигателя. Он может возникнуть из-за нарушения герметичности системы охлаждения, отказа термостата или помпы, сбоев в работе вентилятора охлаждения радиатора, поломки самого радиатора или его датчика.
Точно определить состояние цилиндров и поршней можно с помощью специализированной диагностики самой ЦПГ (при полной разборке двигателя) или других автомобильных систем (например, воздушного фильтра).
В ходе сервисных работ измеряется компрессия в цилиндрах ДВС, берутся пробы картерного масла и пр. Все это помогает оценить исправность работы цилиндро-поршневой группы.
Ремонт цилиндро-поршневой группы двигателя включает замену маслосъемных и компрессионных колец, установку новых поршней, шатунов, восстановление (расточку) цилиндров.
Степень износа последних определяется с помощью индикаторного нутрометра. Трещины и сколы на стенках устраняются эпоксидными пастами или путем сварки.
Новые поршни – с нужным диаметром и массой – подбирают к гильзам, а поршневые пальцы – к поршням и втулкам верхних головок шатунов. Шатуны предварительно проверяют и при необходимости восстанавливают.
Как продлить ресурс ЦПГ?
Ресурс цилиндро-поршневой группы зависит от типа двигателя, режима его эксплуатации, регулярности обслуживания и многих других факторов. Срок службы ЦПГ отечественных автомобилей, как правило, меньше, чем у иномарок: около 200 тыс. км против 500 тыс.км.
Для того, чтобы детали ЦПГ вырабатывали свой ресурс полностью, рекомендуется:
- Использовать моторное масло, одобренное автопроизводителем
- Осуществлять замену масла и охлаждающей жидкости строго по регламенту
- Следить за температурным режимом работы двигателя, не допускать его перегрева и холодного запуска
- Регулярно проводить диагностику автомобиля
- Применять для обслуживания автокомпонентов специальные средства, которые могут защитить их от усиленного износа и максимально продлить срок службы
Присоединяйтесь
- О компании
- Пресс-центр
- Дилерская сеть
- Мы и общество
- Наши услуги
- Отраслевые решения
- Статьи
- Molykote
- MODENGY
- DOWSIL
- EFELE
- PermabondMerbenit
© 2004 – 2021 ООО «АТФ». Все авторские права защищены. ООО «АТФ» является зарегистрированной торговой маркой.
Начертательная геометрия: конспект лекций.
3. Цилиндр и конус.
Цилиндр – это фигура, поверхность которого получается вращением прямой m вокруг оси i, расположенной в одной плоскости с этой прямой. В случае, когда прямая m направлена параллельно оси вращения, получается цилиндр (рис. 60), когда она пересекает ось вращения, полученная фигура будет являться конусом (рис. 61).
Прямой круговой цилиндр имеет образующие, направленные перпендикулярно горизонтальной плоскости (рис. 61). По этой причине вне зависимости от выбора точки N на его поверхности горизонтальная проекция n этой точки находится на основании цилиндра.
Основание цилиндра составляет линию пересечения боковой поверхности цилиндра с горизонтальной плоскостью, т. е. это горизонтальный след поверхности цилиндра. Следовательно, боковая поверхность прямого кругового цилиндра, который стоит на горизонтальной плоскости, рассматривается как горизонтально-проецирующая поверхность по отношению к любой линии, начерченной на его поверхности.
На рисунке 63 показаны проекции цилиндра.
Фронтальная проекция а́а́1, которая образует АА1, ограничивает слева фронтальную проекцию цилиндра, т. е. является ее контурной образующей. На профильной плоскости ее проекция а˝а˝1располагается на оси симметрии этой проекции. Профильная проекция d˝d˝1образующей DD1 является контурной, а ее фронтальная проекция d́d́1 находится на оси симметрии и т. д.
Если мы посмотрим на цилиндр сверху (рис. 63), увидим только его верхнее основание.
Рассмотрим горизонтальную проекцию. Если провести фронтальную плоскость Р, разделяющую цилиндр на две равные части, можно заметить, что все точки, лежащие на передней половине цилиндра, будут видны при рассмотрении цилиндра спереди, т. е. на фронтальной проекции. Боковая поверхность цилиндра, которая расположена ниже следа Рh, видима на фронтальной проекции, а остальная его часть невидима, т. е. образующая СС1 на фронтальной проекции невидима.
Для выделения невидимых элементов на профильной проекции, необходимо обратиться к горизонтальной проекции. След Qh профильной плоскости разделяет горизонтальную проекцию на две части. Боковая поверхность, которая расположена слева от Qh, видима на профильной проекции и т. д. Таким образом образующая ВВ1 невидима на профильной проекции.
На рисунке 64 показан прямой круговой конус, который стоит на горизонтальной плоскости.
Основание конуса и линия пересечения поверхности конуса с любой горизонтальной плоскостью Р проецируются на горизонтальную плоскость в виде окружности, а на фронтальную плоскость – в виде отрезка, который равен диаметру этой окружности.
Рассмотрим на рисунке 65 и все проекции четырех образующих, ограничивающих какой-либо из контуров проекций.
Проекция а́ś образующей АS ограничивает контур на фронтальной проекции, а ее профильная проекция а˝s˝ лежит на оси симметрии проекции (на образующей АS находится произвольная точка) и т. д.
При рассмотрении конуса сверху все точки боковой поверхности видимы (рис. 65).
Для отыскания невидимых элементов на фронтальной проекции проведем на горизонтальной проекции след Рh той плоскости, которая разделяет конус на две части (видимую и невидимую), если смотреть на конус спереди, т. е. образующая SD в этом случае невидима.
Аналогично можно убедиться, что образующая SВ невидима на профильной проекции.
Что такое компрессия в двигателе?
Влияние диаметра цилиндра и хода поршня на эффективный кпд двигателя внутреннего сгорания
Автор: Юлиюс Мацкерле (Julius Mackerle)
32634 2
Объём камеры сгорания в известной степени указывает на количество вводимой теплоты. Теплотворная способность поступающего заряда в бензиновом двигателе определена соотношением воздуха и топлива, близким к стехиометрическому. В дизель подаётся чистый воздух, а подача топлива ограничена степенью неполноты сгорания, при которой в отработавших газах появляется дым. Поэтому связь количества вводимой теплоты с объёмом камеры сгорания достаточно очевидна .
Наименьшим отношением поверхности к заданному объёму обладает сфера. Тепло в окружающее пространство отводится поверхностью, поэтому масса, имеющая форму шара, охлаждается в наименьшей степени. Эти очевидные соотношения учитываются при проектировании камеры сгорания. Следует, однако, иметь в виду геометрическое подобие деталей двигателей разных размеров. Как известно, объём сферы равен 4/3∙π∙R3, а её поверхность — 4∙π∙R2, и, таким образом, объём с ростом диаметра увеличивается быстрее, чем поверхность, и, следовательно, сфера большего диаметра будет иметь меньшую величину отношения поверхности к объёму. Если поверхности сферы разного диаметра имеют одинаковые перепады температур и одинаковые коэффициенты теплоотдачи α, то большая сфера будет охлаждаться медленнее.
Двигатели геометрически подобны, когда они имеют одинаковую конструкцию, но отличаются размерами. Если первый двигатель имеет диаметр цилиндра, например, равный единице, а у второго двигателя он в 2 раза больше, то все линейные размеры второго двигателя будут в 2 раза, поверхности — в 4 раза, а объёмы — в 8 раз больше, чем у первого двигателя. Полного геометрического подобия достичь, однако, не удаётся, так как размеры, например, свечей зажигания и топливных форсунок одинаковы у двигателей с разными размерами диаметра цилиндра.
Из геометрического подобия можно сделать тот вывод, что больший по размерам цилиндр имеет и более приемлемое отношение поверхности к объёму, поэтому его тепловые потери при охлаждении поверхности в одинаковых условиях будут меньше.
При определении мощности нужно, однако, учитывать некоторые ограничивающие факторы. Мощность двигателя зависит не только от размеров, т. е. объёма цилиндров двигателя, но и от частоты его вращения, а также среднего эффективного давления. Частота вращения двигателя ограничена максимальной средней скоростью поршня, массой и совершенством конструкции кривошипно-шатунного механизма. Максимальные средние скорости поршня бензиновых двигателей лежат в пределах 10—22 м/с. У двигателей легковых автомобилей максимальное значение средней скорости поршня достигает 15 м/с, а значения величины среднего эффективного давления при полной нагрузке близки к 1 МПа.
Рабочий объём двигателя и его размеры определяют не только геометрические факторы. Например, толщина стенок задана технологией, а не нагрузкой на них. Теплопередача через стенки зависит не от их толщины, а от теплопроводности их материала, коэффициентов теплоотдачи на поверхностях стенок, перепада температур и т. д. Колебания давления газа в трубопроводах распространяются со скоростью звука независимо от размеров двигателя, зазоры в подшипниках определяются свойствами масляной пленки и т. д. Некоторые выводы относительно влияния геометрических размеров цилиндров, тем не менее, необходимо сделать.
Преимущества и недостатки цилиндра с большим рабочим объёмом
Цилиндр большего рабочего объёма имеет меньшие относительные потери теплоты в стенки. Это хорошо подтверждается примерами стационарных дизелей с большими рабочими объёмами цилиндров, которые имеют очень низкие удельные расходы топлива. В отношении легковых автомобилей это положение, однако, подтверждается не всегда.
Анализ уравнения мощности двигателя показывает, что наибольшая мощность двигателя может быть достигнута при небольшой величине хода поршня.
Средняя скорость поршня может быть вычислена как
где S — ход поршня, м; n — частота вращения, мин-1.
При ограничении средней скорости поршня Cп частота вращения может быть тем выше, чем меньше ход поршня. Уравнение мощности четырёхтактного двигателя имеет вид
Ne = Vh∙pe∙n/120 (кВт),
где Vh — объём двигателя, дм3; n — частота вращения, мин-1; pe — среднее эффективное давление, МПа.
Следовательно, мощность двигателя прямо пропорциональна частоте его вращения и рабочему объёму. Тем самым к двигателю одновременно предъявляются противоположные требования — большой рабочий объём цилиндра и короткий ход. Компромиссное решение состоит в применении большего числа цилиндров.
Наиболее предпочтительный рабочий объём одного цилиндра высокооборотного бензинового двигателя составляет 300—500 см3. Двигатель с малым числом таких цилиндров плохо уравновешен, а с большим — имеет значительные механические потери и обладает поэтому повышенными удельными расходами топлива. Восьмицилиндровый двигатель рабочим объемом 3000 см3 имеет меньший удельный расход топлива, чем двенадцатицилиндровый с таким же рабочим объёмом.
Для достижения малого расхода топлива целесообразно применять двигатели с малым числом цилиндров. Однако одноцилиндровый двигатель с большим рабочим объёмом не находит применения в автомобилях, поскольку его относительная масса велика, а уравновешивание возможно лишь при использовании специальных механизмов, что ведёт к дополнительному увеличению его массы, размеров и стоимости. Кроме того, большая неравномерность крутящего момента одноцилиндрового двигателя неприемлема для трансмиссий автомобиля.
Наименьшее число цилиндров у современного автомобильного двигателя равно двум. Такие двигатели с успехом применяют в автомобилях особо малого класса («Ситроен 2CV», «Фиат 126»). Сточки зрения уравновешенности, следующим в ряду целесообразного применения стоит четырёхцилиндровый двигатель, однако в настоящее время начинают применять и трёхцилиндровые двигатели с небольшим рабочим объёмом цилиндров, поскольку они позволяют получить малые расходы топлива. Кроме того, меньшее число цилиндров упрощает и удешевляет вспомогательное оборудование двигателя, так как сокращается число свечей зажигания, форсунок, плунжерных пар топливного насоса высокого давления. При поперечном расположении в автомобиле такой двигатель имеет меньшую длину и не ограничивает поворот управляемых колёс.
Трёхцилиндровый двигатель позволяет использовать унифицированные с четырёхцилиндровым основные детали: гильзу цилиндра, поршневой комплект, шатунный комплект, клапанный механизм. Такое же решение возможно и для пятицилиндрового двигателя, что позволяет при необходимости увеличения мощностного ряда вверх от базового четырёхцилиндрового двигателя избежать перехода на более длинный шестицилиндровый.
В дизелях помимо уменьшения потерь теплоты при сгорании большой рабочий объёмом цилиндра даёт возможность получить более компактную камеру сгорания, в которой при умеренных степенях сжатия создаются более высокие температуры к моменту впрыска топлива. У цилиндра с большим рабочим объёмом можно использовать форсунки с большим числом сопловых отверстий, обладающих меньшей чувствительностью к нагарообразованию.
Асинхронные электродвигатели: преимущества привода и его особенности
На сегодня именно на электродвигатели асинхронного типа приходится около 80 % электрических машин, используемых в качестве привода в самых разных сферах от бытовой техники до мощных промышленных установок. Среди важнейших преимуществ, которые стоит выделить, также специалисты отмечают отличные эксплуатационные показатели, простоту в обслуживании и ремонте, высокую надёжность.
Конструкция асинхронных электродвигателей
Всё оборудование этой категории делится на машины с фазным или короткозамкнутым ротором. Второй вариант имеет ряд преимуществ в виде сравнительно низкой стоимости (не смотря на аналогичные показатели мощности, скорости вращения,практически те же габаритные размеры асинхронных электродвигателей, их технология производства значительно дешевле). При этом они надёжны в работе, обладают достаточно жёсткими механическими характеристиками. Последний фактор позволяет удерживать постоянные значения частоты вращения в условиях изменяющейся нагрузки.
Но в то же время фазные двигатели выделяются своей способностью плавно регулировать частоту вне зависимости от ширины диапазона. Кроме того, он способен выдерживать значительно большие пусковые токи, превышающие в 5-7 раз номинальные значения. Такими же показателями в эксплуатации обладают двигатели с короткозамкнутым ротором с контактными кольцами. Но в последнем случае неизбежно существенное усложнение конструкции, что ведёт к повышению стоимости оборудования.
Габаритные размеры асинхронных электродвигателей
Широкий спектр применения привёл к тому, что производителями в рамках практически каждой из выпускаемых серий асинхронных двигателей предлагается модельный ряд, в котором модели кардинально отличаются между собой по своим параметрам. Если в качестве примера рассмотреть широко используемую серию АИР, то её мощность меняется в пределах 0,18÷200 кВт. При этом габаритные размеры асинхронных электродвигателей составят218÷1325 мм по длине и 148÷765 мм по высоте, диаметр при этом составит 140÷660 мм.
Отношение хода поршня к диаметру цилиндра
Частное от деления величины хода поршня S на величину диаметра цилиндра D представляет собой широко употребляемое значение отношения S/D. Точка зрения на величину хода поршня в течение развития двигателестроения менялась.
На начальном этапе автомобильного двигателестроения действовала так называемая налоговая формула, на основе которой взимаемый налог на мощность двигателя рассчитывался с учетом числа и диаметра D его цилиндров. Классификация двигателей осуществлялась также в соответствии с этой формулой. Поэтому отдавалось предпочтение двигателям с большой величиной хода поршня с тем, чтобы увеличить мощность двигателя в рамках данной налоговой категории. Мощность двигателя росла, но увеличение частоты вращения было ограничено допустимой средней скоростью поршня. Поскольку механизм газораспределения двигателя в этот период не был рассчитан на высокую оборотность, то ограничение частоты вращения скоростью поршня не имело значения.
Как только описанная налоговая формула была упразднена, и классификация двигателей стада проводится в соответствии с рабочим объёмом цилиндра, ход поршня начал резко уменьшаться, что позволило увеличить частоту вращения и, тем самым, мощность двигателя. В цилиндрах большего диаметра стало возможным применение клапанов больших размеров. Поэтому были созданы короткоходные двигатели с отношением S/D, достигающим 0,5. Усовершенствование механизма газораспределения, особенно при использовании четырех клапанов в цилиндре, позволило довести номинальную частоту вращения двигателя до 10000 мин-1 и более, вследствие чего удельная мощность быстро возросла.
В настоящее время большое внимание уделяется уменьшению расхода топлива. Проведённые с этой целью исследования влияния S/D показали, что короткоходные двигатели обладают повышенным удельным расходом топлива. Это вызвано большой поверхностью камеры сгорания, а также снижением механического КПД двигателя из-за относительно большой величины поступательно движущихся масс деталей шатунно-поршневого комплекта и роста потерь на приводы вспомогательного оборудования. При очень коротком ходе нужно удлинять шатун с тем, чтобы нижняя часть юбки поршня не задевалась противовесами коленчатого вала. Масса поршня при уменьшении его хода мало уменьшилась и при использовании выемок и вырезов на юбке поршня. Для снижения выброса токсичных веществ в отработавших газах целесообразнее применять двигатели с компактной камерой сгорания и с более длинным ходом поршня. Поэтому в настоящее время от двигателей с очень низким отношением S/D отказываются.
Рис. 1 |
Влияние отношения хода поршня S к диаметру цилиндра D на среднее эффективное давление pe гоночных автомобилей |
Зависимость среднего эффективного давления от отношения S/D у лучших гоночных двигателей, где четко видно снижение pe при малых отношениях S/D, приведена на рис. 1. В настоящее время более выгодным считается отношение S/D, равное или несколько большее единицы. Хотя при коротком ходе поршня отношение поверхности цилиндра к его рабочему объёму при положении поршня в НМТ меньше, чем у длинноходных двигателей, нижняя зона цилиндра не так важна для отвода теплоты, поскольку температура газов уже заметно падает.
Длинноходный двигатель имеет более выгодное отношение охлаждаемой поверхности к объёму камеры сгорания при положении поршня в ВМТ, что более важно, так как в этот период цикла температура газов, определяющая потери теплоты, наиболее высока. Сокращение поверхности теплоотдачи в этой фазе процесса расширения уменьшает тепловые потери и улучшает индикаторный КПД двигателя.
Последнее обновление 02.03.2012 Опубликовано 27.09.2011
Степень заполнения рабочего цилиндра свежим зарядом, или степень совершенства процесса наполнения, оценивается коэффициентом наполнения.
Коэффициентом наполнения ?н называется отношение количества свежего заряда, сжимаемого в цилиндре, к количеству заряда, которое могло бы поместиться в объеме рабочего цилиндра Vs при параметрах среды, из которой поступает свежий заряд.
L — количество молей свежего заряда, сжимаемого в цилиндре;
L1 — количество молей свежего заряда в объеме Vs при р0 и Т0, а в случае работы двигателя с наддувом при рк и Тк;
Мr— количество молей остаточных газов при Тr и рr;
R?— универсальная газовая постоянная.
Для дальнейшего вывода выражения коэффициента наполнения сделаем следующие допущения:
процесс наполнения заканчивается в точке а (см. рис. 25 и 26), т. е. отсутствует дозарядка цилиндра в начале сжатия;
абсолютная работа, совершаемая газами за ход наполнения, равна нулю;
кинетическая энергия газов в цилиндре равна нулю.
В соответствии с принятыми обозначениями можно написать, что
и количество смеси свежего заряда с остаточными газами в конце наполнения будет равно
Из уравнения состояния (см. рис. 26) находим:
При работе двигателя без наддува
при работе с наддувом
Подставляя значения М1 L и Мr в уравнение (14), получим формулу для определения коэффициента наполнения четырехтактных двигателей:
Можно ?н выразить и через коэффициент остаточных газов ? , так как:
При работе двигателя с наддувом р0 = рк и Т0 = ТК, а потому получим наиболее общую формулу, справедливую и для двухтактных двигателей,
Уточненное выражение коэффициента наполнения, предложенное М. М. Масленниковым для четырехтактных быстроходных двигателей с наддувом
Данная формула включает опытные коэффициенты, которые учитывают дозарядку цилиндра ?1, продувку камеры сгорания ?2 и работу наполнения ?3. Для быстроходных двигателей эти коэффициенты равны: ?1 = 1,02 ? 1,06; ?2 = 1,1 и ?3 = 0,87 ? 0,88.
Отсутствие опытных данных количественной оценки коэффициентов ?1 ?2 и ?3 для различных двигателей ограничивает практическое применение формулы (17).
Рассмотрение полученных формул (15) и (16) позволяет установить влияние различных факторов на коэффициент наполнения. Наибольшее влияние на величину коэффициента наполнения оказывает давление ра. С увеличением давления ра, которое происходит при уменьшении сопротивлений впускного тракта, возрастает плотность и количество свежего заряда, а следовательно, и возрастает коэффициент наполнения. При уменьшении температуры заряда в конце наполнения Та плотность его возрастает, а потому коэффициент наполнения также будет возрастать.
Давление и температура остаточных газов рr и Тr мало влияют на величину ?н, так как отношение pr/Tr в формуле (15) составляет незначительную величину.
Коэффициент остаточных газов ?r значительно влияет на ?н; с увеличением ?r температура свежего заряда в конце наполнения возрастает, а потому коэффициент наполнения уменьшается. Опытные данные показывают, что при увеличении ?r от 0,05 до 0,15 коэффициент наполнения снижается от 0,86 до 0,69.
Влияние степени сжатия ? на ?н надо рассматривать совместно с влиянием коэффициента остаточных газов ?r на ?н.
Из формул (15) и (16) следует, что с увеличением ? ?н падает. Однако с увеличением е коэффициент остаточных газов уменьшается и поэтому ?н будет несколько возрастать. Следует отметить, что при колебании степени сжатия в дизелях (? = 13 ? 16) ?н изменяется очень мало и это изменение можно не учитывать.
Как следует из определения коэффициента наполнения, параметры на впуске р0 и То непосредственно не влияют на величину ?н, они влияют на плотность и на вес свежего заряда цилиндра, а следовательно, и на мощность, развиваемую двигателем.
Но, как показывают опыты, повышение температуры на впуске Т0 уменьшает перепад температур ?Т (нагрев воздуха в цилиндре) вследствие чего ?н несколько возрастает. Таким образом, изменение Т0 косвенно влияет на изменение ?н.
Фазы распределения влияют на протекание процесса наполнения и на величину коэффициента наполнения и коэффициента остаточных газов. Одновременно, как это видно на схематической диаграмме выпуска (рис. 27), при правильном установлении опережения выпуска уменьшается затрата энергии на выталкивание (точка 3) по сравнению с точкой 1, когда опережение выпуска отсутствует. При слишком раннем опережении (точка 2) площадь индикаторной диаграммы значительно уменьшается и уменьшается мощность двигателя. Запаздывание закрытия выпускного клапана позволяет использовать инерционное движение газов в выпускном трубопроводе для понижения давления в нем ниже р0, а следовательно, для лучшей очистки цилиндра от отработавших газов.
Запаздывание закрытия впускного клапана способствует увеличению свежего заряда, во-первых, потому, что при положении поршня в НМТ все еще остается большое проходное сечение впускного клапана, во-вторых, давление в цилиндре в начале сжатия меньше р0 и воздух может поступать в цилиндр и, в-третьих, вследствие инерции потока воздух будет поступать в цилиндр и при давлении больше р0. Перекрытие впускного и выпускного клапанов способствует лучшей очистке цилиндра, а при наддуве осуществляет продувку камеры сгорания.
Изменение числа оборотов двигателя, т. е. изменение скоростного режима двигателя, влияет на скорость потока во впускном тракте, а следовательно, на величину ?ра и на ?н. С увеличением числа оборотов двигателя коэффициент наполнения уменьшается, так как вследствие увеличения гидравлических сопротивлений во впускном тракте давление ра уменьшается. Величина коэффициента наполнения в двигателях без наддува обычно составляет 0,75—0,85, а у двигателей с наддувом за счет уменьшения ?к коэффициент наполнения возрастает.
Диаметра Поршня и его Ход — как влияют на ТТХ двигателя (теоретически) ?
Наиболее часто она используется в специальных машинах и транспортных средствах.
Сноски
- ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 186 — 192 (книга есть в библиотеке сайта). – Прим. icarbio.ru
- ↺ Узнать больше о эффективном КПД. – Прим. icarbio.ru
Комментарии
Парень, не проще ли по авто-форумам полазить, чем тут всё выспрашивать?
Почему возникает перегрев?
Изучите элементы системы охлаждения. Практически любой из них при определенных обстоятельствах может быть причиной перегрева двигателя. В основном такие проблемы в большинстве случаев вызывает недостаточное количество охлаждающей жидкости в системе, плохое охлаждение жидкости в радиаторе, недостаточное уплотнение камеры сгорания, не герметичность в системе. Именно плохая герметичность системы является причиной уменьшения избыточного давления в системе.
Причиной плохого охлаждения жидкости в радиаторе является наружное загрязнение радиатора пылью, листвой, тополиным пухом, а также неисправность муфты или двигателя включения вентилятора, датчика, термостата. Возможно и внутреннее загрязнение радиатора. Раньше это было из-за накипи, после длительной работы двигателя на воде. Сейчас причиной загрязнения является использование разнообразных герметиков для радиатора. Такой эффект от них даже более сильный, чем от воды. Довольно большая проблема прочистить тонкие трубки радиатора, если они забиты таким средством. Обычно такие неисправности легко обнаружить и чтобы доехать до пункта назначения или СТО, необходимо долить жидкость в систему и включить отопитель.
Распространенная причина перегрева — недостаточное уплотнение камеры сгорания. Продукты сгорания топлива в цилиндре находятся под большим давлением. Они просачиваются в рубашку охлаждения через плохое уплотнение и оттесняют охлаждающую жидкость от стенок камеры сгорания. Также горячие газы дополнительно нагревают стенку.
Увеличение степени сжатия
Возможность увеличения степени сжатия без риска преждевременной детонации предусмотрена во многих двигателях. Это делается через уменьшение объема камеры сгорания (чем он меньше, тем сильнее будет сжиматься находящаяся в ней рабочая смесь). Существует три способа:
- Расточка цилиндров. При этом увеличивается объем двигателя. Поскольку объем камеры сгорания не меняется, это повышает степень сжатия. Однако расточка цилиндров подразумевает обязательную замену поршней, что обусловлено увеличением диаметра.
- Фрезерная обработка нижней части ГБЦ, в результате чего она укорачивается. Объем двигателя остается прежним, а у камеры сгорания — уменьшается, соответственно — повышается степень сжатия.
- Установка более тонкой прокладки ГБЦ по сравнению с имеющейся. Это также приведет к уменьшению объема камеры сгорания при неизменном объеме двигателя.
Подробнее о том, как увеличить мощность дизельного двигателя читайте в нашем материале.
В двух последних случаях следует учитывать вероятность столкновения поршней с клапанами. Поэтому перед модернизацией двигателя следует провести точные расчеты. Одним из вариантов решения проблемы является установка поршней, имеющих увеличенные выемки под клапана (они предназначены, в том числе, для подобных операций).
Что дает соотношение хода поршня к диаметру цилиндра
Оперативный запас электродвигателей составляет более 1500 единиц, постоянно увеличивается запас крановых электродвигателей
«Практика» — это круг партнеров, отличающихся высокой степенью надежности. Мы предлагаем к продаже только качественное оборудование. Наше оборудование — наш имидж, и последним мы очень дорожим.
По желанию заказчика произведем отгрузку в любой регион.
Надеемся, что данная информация окажется для Вас полезной и мы непременно установим долговременные взаимовыгодные отношения.
Дорогие друзья! |
© 2006 ООО «Практика» |
Карбюраторный двигатель ВАЗ 2106 с четырьмя цилиндрами представляет собой рядную силовую установку с вертикальным ходом поршневой группы. Дислокация распределительного вала – вверху в ГБЦ.
Линейка двигателей ВАЗ шестого поколения представлена 3 видами моторов:
- Изделие, где объем двигателя составляет 1,6 л. Это наиболее востребованный агрегат семейства классических транспортных средств этой модели.
- Изделие с мотором, объем которого приближается к 1,3 л. Отличие от основной силовой установки состоит в том, что в этом агрегате длина хода поршневых элементов меньше на 1,4 см. Соответственно, изменения коснулись и таких элементов мотора, как блок, коленчатый вал и компоненты цепной передачи ГРМ. Также в топливной системе использован другой карбюратор.
- Изделие с мотором, объем которого составляет почти 1,5 л. Отличие от штатного карбюраторного агрегата состоит в диаметре поршневой группы, который меньше на 0,03 см штатного диаметра цилиндров. Это привело к изменению параметров блока и шатунно-поршневых элементов.
Штатный двигатель ВАЗ 2106 – это результат модернизации мотора «тройки». Вследствие этой усовершенствования мощность двигателя увеличена до 75 л.с. при достижении крутящего момента 116 Нм. При этом диаметр цилиндра составляет 7,9 см.
Качественный тюнинг двигателя предназначен для повышения параметров динамичности силовой установки. Методы проведения тюнинга:
- форсирование движка «шестерки»;
- чип-тюнинг двигателя;
- установка более прогрессивной системы зажигания на транспортное средство.
Серьезным прорывом при тюнинге двигателя можно считать увеличение поршневого хода и диаметра цилиндров. Если в первом случае необходимо заменить коленвал, что весьма затратно, то во втором моменте проще применить цилиндры ремонтных (увеличенных) размеров. Также практикуется поршневые изделия иных модификаций, что потребует проведения хонингования гильзовых отверстий. Для повышения степени сжатия требуется провести обработку прокладки-уплотнителя ГБЦ.
Одним из действенных способов тюнинга двигателя может стать т.н. доводка силовой установки, представляющая собой перечень мероприятий на агрегате, приводящий к улучшению динамических показателей мотора.
Влияние диаметра цилиндра и хода поршня на эффективный кпд двигателя внутреннего сгорания
Основные действия при выполнении доводки:
- Снижение весовых характеристик коленвала и шатунно-поршневой группы.
- Шлифовальные работы и притирка сопряженных поверхностей коллекторов.
- Калибровка и регулировка электронных комплексов, отвечающих за работу моторного агрегата.
- Увеличение или уменьшение передаточных чисел шестерен.
Углубленный тюнинг двигателя ВАЗ 2106, прежде всего, связан с подбором и установкой коленвала специального типа взамен штатной детали. Такая деталь монтируется с кривошипом большего размера. Под блок, расточенный под поршневую группу увеличенного диаметра, подбираются цилиндры, укомплектованные кольцами Т-образной конфигурации компрессионного типа.
Далее проводится технологическая корректировка настройки всех составляющих элементов двигателя с основной задачей по повышению коэффициента сжатия в цилиндре мотора. Этот показатель напрямую связан с угловым значением газораспределительных фаз и позиции дроссельной заслонки.
Позиционное изменение газораспределительного вала проводится приводной шестеренкой регулируемого типа, что дает возможность наполнять топливом с повышенной концентрацией воздуха камеру сгорания. Наиболее эффективным вариантом тюнинга двигателя считается монтаж турбины на силовую установку и оборудование транспортного средства т.н. «прямотоком», т.е. выводной системой прямоточного выхода газов. Выбор такого вспомогательного оснащения целесообразно проводить со специалистом по двигателям. Если автомобиль будет усовершенствован турбиной, то это намного увеличит динамические параметры двигателя.
Такой вид модернизации, как чип-тюнинг двигателя дает возможность оптимизации функционала транспортного средства. Изменение динамических параметров происходит без применения механических доводок. Такой сервис проводится исключительно в авто, где имеется система ЭБУ. Наличие в ЭБУ соответствующего программного обеспечения позволяет контролировать и изменять параметры настроек зажигания, топливной подачи, расходомера и т.д.
Одним из прогрессивных путей тюнинга двигателя считается корректировка системы зажигания транспортного средства. Для этих целей практикуется установка электронно-коммутационного зажигания, которое в среде автомобилистов называют бесконтактным, т.е. без участия компонентов механической коммутации (контактов прерывателя). Дополнительно к этому необходимо поменять свечные элементы системы на более высококачественные изделия.
Что такое рабочий объем двигателя и как его рассчитывают
Рабочий объем цилиндра представляет собой объем находящийся между крайними позициями движения поршня.
Формула расчета цилиндра известна еще со школьной программы – объем равен произведению площади основания на высоту. И для того чтобы вычислить объем двигателя автомобиля либо мотоцикла также нужно воспользоваться этими множителями. Рабочий объём любого цилиндра двигателя рассчитывается так:
где,
h — длина хода поршня мм в цилиндре от ВМТ до НМТ (Верхняя и Нижняя мёртвая точка)
r — радиус поршня мм
п — 3,14 не именное число.
Как узнать объем двигателя
Для расчета рабочего объема двигателя вам будет нужно посчитать объем одного цилиндра и затем умножить на их количество у ДВС. И того получается:
Vдвиг = число Пи умноженное на квадрат радиуса (диаметр поршня) умноженное на высоту хода и умноженное на кол-во цилиндров.
Поскольку, как правило, параметры поршня везде указываются в миллиметрах, а объем двигателя измеряется в см. куб., то для перевода единиц измерения, результат придется разделить еще на 1000.
Заметьте, что полный объем и рабочий, отличаются, так как поршень имеет выпуклости и выточки под клапана и в него также входить объем камеры сгорания. Поэтому не стоит путать эти два понятия. И чтобы рассчитать реальный (полный) объем цилиндра, нужно суммировать объем камеры и рабочий объем.
Определить объем двигателя можно обычным калькулятором, зная параметры цилиндра и поршня, но посчитать рабочий объем в см³ нашим, в режиме онлайн, будет намного проще и быстрее, тем более, если вам расчеты нужны, дабы узнать мощность двигателя, поскольку эти показатели напрямую зависят друг от друга.
Объем двигателя внутреннего сгорания очень часто также могут называть литражом, поскольку измеряется как в кубических сантиметрах (более точное значение), так и литрах (округленное), 1000 см³ равняется 1 л.
На какие характеристики влияет литраж?
Основной параметр, от которого будет зависеть мощность авто – объем двигателя. Например, если под капотом будет установлена модификация на 1,5 литра и 120 л.с., то аналог с увеличенным объемом до двух литров, естественно, будет мощнее.
Однако не стоит считать литраж единственным фактором, влияющим на мощность. Характеристики мотора могут существенно измениться при наличии турбины, измененных размеров кривошипно-шатунного механизма и системы смены фаз газораспределения .
На что еще влияет объем двигателя?
- Динамика. Совокупность современных технологий газораспределения и большого объема цилиндров позволяет повысить пиковую скорость авто и сократить время разгона. Эти параметры также могут значительно измениться, если производитель установит в мотор особенные шатуны и коленвал.
- Стоимость автомобиля. Для моделей с мощным мотором потребуется более надежная коробка передач, улучшенная тормозная система, подвеска, и шины. Это необходимо, потому что водитель будет пытаться использовать весь потенциал транспорта, а значит, машина будет быстро ездить. Изготовление и обслуживание такого транспорта будет дороже.
- Расход топлива. Машины с 1,5-литровыми силовыми агрегатами в городском режиме расходуют в среднем 6-7 литров на 100км., а среднелитражные – порядка 9-14 л./100км. «Прожорливость» крупнолитражных моделей стартует от показателя в 15 литров. Однако и эти параметры относительны. Так, для динамичной езды на малолитражке водителю придется часто «крутить» мотор на повышенных оборотах, что обязательно приведет к перерасходу топлива. А если машина оснащена кондиционером, то малолитражка будет не менее прожорливой, чем аналог классом выше.
Подробней о связи расхода и объема двс рассказывается в видео:
Как связаны расход топлива и объем двигателя? Watch this video on YouTube
Расчет объема ДВС калькулятором
Чтобы посчитать объем интересующего вас двигателя нужно внести 3 цифры в соответствующие поля, — результат появится автоматически. Все три значения можно посмотреть в паспортных данных автомобиля или тех. характеристиках конкретной детали либо же определить, какой объем поршневой поможет штангенциркуль.
Таким образом, если к примеру у вас получилось что объем равен 1598 см³, то в литрах он будет обозначен как 1,6 л, а если вышло число 2429 см³, то 2,4 литра.
Длинноходный и короткоходный поршень
Также замете, что при одинаковом количестве цилиндров и рабочем объеме двигателя могут иметь разный диаметр цилиндров, ход поршней и мощность таких моторов так же будет разной. Движок с короткоходными поршнями очень прожорлив и имеет малый КПД, но достигает большой мощности на высоких оборотах. А длинноходные стоят там, где нужна тяга и экономичность.
Следовательно, на вопрос «как узнать объем двигателя по лошадиным силам» можно дать твердый ответ – никак. Ведь лошадиные силы хоть и имеют связь с объемом двигателя, но вычислить его по ним не получится, поскольку формула их взаимоотношения еще включает много разных показателей. Так что определить кубические сантиметры двигателя можно исключительно по параметрам поршневой.
Классификация автомобилей с учетом объема двигателя
Так как не существует транспорта, который соответствовал бы запросам всех автомобилистов, производители создают моторы с разными характеристиками. Каждый, исходя из своих предпочтений, подбирает определенную модификацию.
По литражу двигателя все автомобили делятся на четыре класса:
- Микролитражные – машины с мотором, объем которых не превышает 1,1 литра. Например, среди таких транспортных средств CITROEN C1 и FIAT 500C .
- Малолитражные – авто, объем двс которых варьируется от 1,2 до 1,7 л. Такие машины пользуются популярностью среди тех, кому важен минимальный показатель расхода со средней производительностью. Представителями такого класса является DAIHATSU COPEN 2002-2012 и CITROEN BERLINGO VAN .
- Среднелитражные – силовой агрегат в таких автомобилях имеет объем от 1,8 до 3,5 л. В этот класс входят такие модели, как BUICK REGAL TOURX и LAND ROVER RANGE ROVER EVOQUE .
- Крупнолитражные – в таких авто объем двс будет больше 3,5л. Среди представителей данного класса: ASTON MARTIN VANQUISH VOLANTE 2013 , CHEVROLET CAMARO 2021 и BENTLEY CONTINENTAL GT CONVERTABLE .
Данная классификация действует в случае бензиновых агрегатов. Часто в описании характеристик можно встретить несколько иную маркировку:
- B – компактные машины с литражом 1,0 – 1,6. Чаще всего это бюджетные варианты, такие как SKODA FABIA .
- C – в данную категорию входят модели, сочетающие в себе среднюю цену, неплохую производительность, практичность и презентабельный внешний вид. Моторы в них будут объемом от 1,4 до 2,0 литров. Представителем данного класса является SKODA OCTAVIA 4 .
- D – чаще всего такими автомобилями пользуются деловые люди и семьи. В машинах мотор будет объемом в 1,6-2,5 литра. Список моделей в этом классе не короче, чем в предыдущем сегменте. Один из таких автомобилей — VOLKSWAGEN PASSAT .
- E – транспортные средства бизнес-класса. ДВС в таких моделях чаще всего объемом в 2,0 л. и больше. Примером таких авто является AUDI А6 2021 .
Помимо литража в данной классификации учитываются такие параметры, как целевой сегмент (бюджетная модель, средняя стоимость или премиум), габариты кузова, комплектация систем комфорта. Иногда производители комплектуют малолитражными моторами автомобили среднего и высшего классов, поэтому нельзя сказать, что представленные маркировки имеют жесткие границы.
Когда модель автомобиля стоит между сегментами (например, по техническим характеристикам это класс С, а системы комфорта позволяют отнести авто к классу Е), к букве добавляют «+».
Помимо упомянутой классификации существуют и другие маркировки:
- J – внедорожники и кроссоверы;
- M – минивэны и микроавтобусы;
- S – спортивные модели автомобилей.
Моторы таких автомобилей могут иметь разный объем.
Зачем нужно проверять объем двигателя
Чаще всего узнают объем двигателя когда хотят увеличить степень сжатия, то есть если хотят расточить цилиндры с целью тюнинга. Поскольку чем больше степень сжатия, тем больше будет давление на поршень при сгорании смеси, а следовательно, двигатель будет более мощным. Технология изменения объема в большую сторону, дабы нарастить степень сжатия, очень выгодна — ведь порция топливной смеси такая же, а полезной работы больше. Но всему есть свой предел и чрезмерное её увеличение грозит самовоспламенением, вследствие чего происходит детонация, которая не только уменьшает мощность, но и грозит разрушением мотора.
Понятие рабочего объёма цилиндра
Распространённое определение рабочего объёма двигателя звучит следующим образом: им обозначают суммарное значение объёмов цилиндров силового агрегата, а под объёмом поршня следует понимать произведение длины его хода на площадь верхней проекции. Ход поршня, в свою очередь – это расстояние между верхней и нижней мёртвыми точками. Таким образом, рабочим объёмом цилиндра называют объём камеры сгорания, в которой и происходят энергетические процессы – воспламенение горючей смеси и её сгорание.
В такте впуска происходит наполнение цилиндра топливовоздушной смесью, который завершается, когда поршень находится в нижней МТ. При движении поршня в обратном направлении происходит сжатие горючей смеси и её воспламенение.
Степень сжатия определяется при делении полного объёма цилиндра (когда поршень пребывает в НМТ) к объёму камеры сгорания (ВМТ). Чем больше степень сжатия, тем с большей силой смесь при возгорании и расширении давит на поршень, то есть от этого показателя напрямую зависит мощность мотора.
Таким образом, для увеличения мощности двигателей достаточно увеличивать степень сжатии. Но на деле всё упирается в некий предел сжатия, при превышении которого смесь самовозгорается без искры или сгорает настолько быстро, что двигатель начинает детонировать и работать неустойчиво.
Симптомы детонационных процессов – постукивания, доносящиеся из двигателя, наличие густого выхлопа чёрного цвета, а также падение мощности. Автопроизводители тратят много усилий, чтобы увеличить степень сжатия и при этом избавиться от детонации, но делать это им становится всё труднее.
Рост мощности зависит также от скорости вращения коленвала, но и этот показатель бесконечно увеличивать нельзя: горючая смесь не будет успевать попадать в цилиндр, возникают проблемы с выводом отработанных газов, да и износ деталей при увеличении скорости вращения также увеличивается.
Современные моторы – многоцилиндровые. Это означает, что рабочий объём двигателя является арифметической суммой полных объёмов всех цилиндров, и чем он больше, тем выше класс автомобиля и мощнее силовой агрегат.
Часто задаваемые вопросы
В чем измеряется объем двигателя?
Объем двигателя измеряется в кубических сантиметрах
(см3), но в документации часто пишется именно в литрах (л.). 1000 кубических сантиметров равны 1 литру. Единица самого точного измерения объема именно куб сантиметры, поскольку, когда объем двигателя автомобиля указывается в литрах, то производится округление до целого числа после запятой. Например, объем 2,4 л. равны 2429 см3.
Какая формула рабочего объем цилиндра двигателя?
Рабочий объем цилиндра двигателя равен произведению числа Пи (3.1415) на квадрат радиуса основания и на высоту хода в нем поршня. Сама формула объема цилиндра ДВС в куб. сантиметрах выглядит так: Vраб = π⋅r²⋅h/1000
Как измерить объем двигателя автомобиля?
Объем двигателя – это сумма рабочих объемов всех его цилиндров, соответственно, необходимо сначала узнать какой объем одного цилиндра, а затем умножить на их количество. Объем цилиндра вычисляют, умножив высоту на квадрат радиуса и число «Пи». Но, чтобы измерить именно рабочий объем цилиндра в двигателе, за высоту нужно брать длину хода поршня от НМТ до ВМТ, а радиус можно померить также линейкой, узнав сначала диаметр цилиндра. Такой метод измерения возможен только при снятой головке либо заведомо известных параметрах.
Источник https://gazykt.ru/dvigatel/chto-takoe-konusnost-tsilindra-dvigatelya.html
Источник https://zer-good74.ru/raznoe/na-chto-vliyayut-cilindry-v-dvigatele.html
Источник https://autopower2014.ru/brendy/rabochij-obem.html
Источник